精英家教網 > 高中數學 > 題目詳情

已知曲線 y = x3 + x-2 在點 P0 處的切線  與直線4x-y-1=0平行,且點 P0 在第三象限,
(1)求P0的坐標;
(2)若直線  , 且 l 也過切點P0 ,求直線l的方程.

⑴切點P0的坐標為 (-1,-4).⑵

解析試題分析:⑴由y=x3+x-2,得y′=3x2+1,
由已知得3x2+1=4,解之得x=±1.當x=1時,y=0;當x=-1時,y=-4.
又∵點P0在第三象限,
∴切點P0的坐標為 (-1,-4).
⑵∵直線,的斜率為4,∴直線l的斜率為,
∵l過切點P0,點P0的坐標為 (-1,-4)
∴直線l的方程為
考點:本題主要考查直線方程,直線與直線的位置關系,導數的幾何意義。
點評:中檔題,曲線的切線斜率等于,在切點處的導函數值。兩直線垂直,則直線的斜率乘積為-1,或一直線斜率為0,另一直線斜率不存在。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數
(1)當時,求的極小值;
(2)若直線對任意的都不是曲線的切線,求的取值范圍;
(3)設,求的最大值的解析式.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數
(1)若函數在x=1處與直線相切.
①求實數,的值;②求函數上的最大值.
(2)當時,若不等式對所有的都成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題


(1)若處有極值,求;(2)若上為增函數,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知時有極值0。
(1)求常數 的值;
(2)求的單調區(qū)間。
(3)方程在區(qū)間[-4,0]上有三個不同的實根時實數的范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

若函數f(x)=ax3-bx+4,當x=2時,函數f(x)有極值-.
(1)求函數的解析式.
(2)若方程f(x)=k有3個不同的根,求實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(Ⅰ)若曲線在點處的切線與直線平行,求出這條切線的方程;
(Ⅱ)若,討論函數的單調區(qū)間;
(Ⅲ)對任意的,恒有,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,是否存在實數,使函數在上遞減,在上遞增?若存在,求出所有值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數(常數)在處取得極大值M.
(Ⅰ)當M=時,求的值;
(Ⅱ)記上的最小值為N,若,求的取值范圍.

查看答案和解析>>

同步練習冊答案