【題目】在平面直角坐標(biāo)系中,已知橢圓:的焦距為2,且過(guò)點(diǎn).
(1)求橢圓的方程;
(2)設(shè)橢圓的上頂點(diǎn)為,右焦點(diǎn)為,直線(xiàn)與橢圓交于,兩點(diǎn),問(wèn)是否存在直線(xiàn),使得為的垂心,若存在,求出直線(xiàn)的方程:若不存在,說(shuō)明理由.
【答案】(1)(2)存在,
【解析】
(1)把點(diǎn)的坐標(biāo)代入橢圓方程,利用橢圓中的關(guān)系和已知,可以求出橢圓方程;
(2)設(shè)直線(xiàn)的方程,與橢圓方程聯(lián)立,根據(jù)一元二次方程根與系數(shù)關(guān)系,結(jié)合已知和斜率公式,可以求出直線(xiàn)的方程.
解:(1)由已知可得:解得,,,
所以橢圓:.
(2)由已知可得,,,∴,∵,
設(shè)直線(xiàn)的方程為:,代入橢圓方程整理得
,設(shè),,
則,,
∵,∴.
即,
因?yàn)?/span>,,
即.
.
所以,或.
又時(shí),直線(xiàn)過(guò)點(diǎn),不合要求,所以.
故存在直線(xiàn):滿(mǎn)足題設(shè)條件.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖放置的邊長(zhǎng)為1的正方形 沿 軸滾動(dòng)(向右為順時(shí)針,向左為逆時(shí)針).設(shè)頂點(diǎn) 的軌跡方程是,則關(guān)于的最小正周期及在其兩個(gè)相鄰零點(diǎn)間的圖像與x軸所圍區(qū)域的面積S的正確結(jié)論是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)a=1時(shí),求不等式f(x)>2的解集;
(2)若對(duì)任意x∈R,不等式f(x)≥a2-3a-3恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(其中為參數(shù))曲線(xiàn)的普通方程為,以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線(xiàn)和曲線(xiàn)的極坐標(biāo)方程;
(2)射線(xiàn):依次與曲線(xiàn)和曲線(xiàn)交于、兩點(diǎn),射線(xiàn):依次與曲線(xiàn)和曲線(xiàn)交于、兩點(diǎn),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:過(guò)點(diǎn),過(guò)坐標(biāo)原點(diǎn)作兩條互相垂直的射線(xiàn)與橢圓分別交于,兩點(diǎn).
(1)證明:當(dāng)取得最小值時(shí),橢圓的離心率為.
(2)若橢圓的焦距為2,是否存在定圓與直線(xiàn)總相切?若存在,求定圓的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)其中為實(shí)數(shù).設(shè),為該函數(shù)圖象上的兩個(gè)不同的點(diǎn).
(1)指出函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)的圖象在點(diǎn),處的切線(xiàn)互相平行,求的最小值;
(3)若函數(shù)的圖象在點(diǎn),處的切線(xiàn)重合,求的取值范圍.(只要求寫(xiě)出答案).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,射線(xiàn)的方程為,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的方程為.一只小蟲(chóng)從點(diǎn)沿射線(xiàn)向上以單位/min的速度爬行
(1)以小蟲(chóng)爬行時(shí)間為參數(shù),寫(xiě)出射線(xiàn)的參數(shù)方程;
(2)求小蟲(chóng)在曲線(xiàn)內(nèi)部逗留的時(shí)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平面內(nèi)一個(gè)動(dòng)點(diǎn)M到定點(diǎn)F(3,0)的距離和它到定直線(xiàn)l:x=6的距離之比是常數(shù).
(1)求動(dòng)點(diǎn)M的軌跡T的方程;
(2)若直線(xiàn)l:x+y-3=0與軌跡T交于A,B兩點(diǎn),且線(xiàn)段AB的垂直平分線(xiàn)與T交于C,D兩點(diǎn),試問(wèn)A,B,C,D是否在同一個(gè)圓上?若是,求出該圓的方程;若不是,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;
(2)求的單調(diào)區(qū)間;
(3)若對(duì)于任意,都有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com