(本題11分)已知圓,過原點的直線與圓相交于兩點
(1) 若弦的長為,求直線的方程;
(2)求證:為定值。
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,已知圓C1:(x+3)2+(y-1)2=4和圓C2:(x-4)2+(y-5)2=9.
(1)判斷兩圓的位置關(guān)系;
(2)求直線m的方程,使直線m被圓C1截得的弦長為4,與圓C截得的弦長是6.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓:交軸于兩點,曲線是以為長軸,直線:為準(zhǔn)線的橢圓.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若是直線上的任意一點,以為直徑的圓與圓相交于兩點,求證:直線必過定點,并求出點的坐標(biāo);
(3)如圖所示,若直線與橢圓交于兩點,且,試求此時弦的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知⊙和點.
(Ⅰ)過點向⊙引切線,求直線的方程;
(Ⅱ)求以點為圓心,且被直線截得的弦長為4的⊙的方程;
(Ⅲ)設(shè)為(Ⅱ)中⊙上任一點,過點向⊙引切線,切點為. 試探究:平面內(nèi)是否存在一定點,使得為定值?若存在,請舉出一例,并指出相應(yīng)的定值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分10分)
在極坐標(biāo)系中,已知兩點O(0,0),B(2,).
(1)求以OB為直徑的圓C的極坐標(biāo)方程,然后化成直角方程;
(2)以極點O為坐標(biāo)原點,極軸為軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為(t為參數(shù)).若直線l與圓C相交于M,N兩點,圓C的圓心為C,求DMNC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
如圖,是⊙的直徑,垂直于⊙所在的平面,是圓周上不同于的一動點.
(1)證明:面PAC面PBC;
(2)若,則當(dāng)直線與平面所成角正切值為時,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)在平面直角坐標(biāo)系中,是拋物線的焦點,是拋物線上位于第一象限內(nèi)的任意一點,過三點的圓的圓心為,點到拋物線的準(zhǔn)線的距離為.(Ⅰ)求拋物線的方程;(Ⅱ)是否存在點,使得直線與拋物線相切于點若存在,求出點的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com