已知等差數(shù)列的公差不為零,其前n項(xiàng)和為,若=70,且成等比數(shù)列,
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列的前n項(xiàng)和為,求證:
(1);(2)答案詳見解析.

試題分析:數(shù)列問題要注意以下兩點(diǎn)①等差(比)數(shù)列中各有5個(gè)基本量,建立方程組可“知三求二”;②數(shù)列的本質(zhì)是定義域?yàn)檎麛?shù)集或其有限子集的函數(shù),數(shù)列的通項(xiàng)公式即為相應(yīng)的解析式,因此在解決數(shù)列問題時(shí),應(yīng)注意用函數(shù)的思想求解.(1)由題知,展開,又,利用等差數(shù)列通項(xiàng)公式展開,得方程,聯(lián)立求,進(jìn)而求數(shù)列的通項(xiàng)公式;(2)求數(shù)列前項(xiàng)和,首先考慮其通項(xiàng)公式,利用裂項(xiàng)相消法,求得,將其看作自變量為的函數(shù),求其值域即可.
試題解析:(1)由題知,即,           2分
解得(舍去),              4分
所以數(shù)列的通項(xiàng)公式為 .                     4分
(2)由(1)得                    7分
                       8分

=                          10分
可知,即                 11分
可知是遞增數(shù)列,則           13分
可證得:              14分項(xiàng)和;3、裂項(xiàng)相消法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知為公差不為零的等差數(shù)列,首項(xiàng),的部分項(xiàng)、、 、恰為等比數(shù)列,且,.
(1)求數(shù)列的通項(xiàng)公式(用表示);
(2)設(shè)數(shù)列的前項(xiàng)和為, 求證:是正整數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知正項(xiàng)數(shù)列的前項(xiàng)和為,若,則
A.B.C.2014D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在等差數(shù)列中,若公差,且成等比數(shù)列,則公比      .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在數(shù)列中,,,則        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知數(shù)列,若點(diǎn)均在直線上,則數(shù)列的前9項(xiàng)和等于(  )
A.18B.20 C.22D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

等差數(shù)列{an}中,a7=4,a19=2a9.
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn,求數(shù)列{bn}的前n項(xiàng)和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

等差數(shù)列的前項(xiàng)和為,則          

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知等差數(shù)列中,,則(    )
A.8B.21C.28D.35

查看答案和解析>>

同步練習(xí)冊答案