若f(n)表示n2+1(n∈N*)的各位數(shù)字之和,如:62=36,36+1=37,3+7=10,則f(6)=10,記f1(n)=f(n),f2(n)=f(f1(n)),…fk+1(n)=f(fk(n))(k∈N*),則f2009(8)=   
【答案】分析:通過觀察前幾個函數(shù)值的規(guī)律得,fn(8)構(gòu)成一個周期為3的周期性的數(shù)列,再利用數(shù)列的周期性即可解決問題.
解答:解:.82=64,64+1=65,6+5=11,∴f1(8)=f(8)=11;
112=121,121+1=122,1+2+2=5,∴f2(8)=5;
52=25,25+1=26,2+6=8,∴f3(8)=8;
82=64,64+1=65,6+5=11,∴f4(8)=11,
∴fn(8)構(gòu)成一個周期為3的周期性的數(shù)列,
∴f2009(8)=f3×669+2(8)=f2(8)=5.
點(diǎn)評:本題主要考查了歸納推理、函數(shù)的周期性,以及數(shù)列遞推式,屬于基礎(chǔ)題.所謂歸納推理,就是從個別性知識推出一般性結(jié)論的推理.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

8、若f(n)表示n2+1(n∈N*)的各位數(shù)字之和,如:62=36,36+1=37,3+7=10,則f(6)=10,記f1(n)=f(n),f2(n)=f(f1(n)),…fk+1(n)=f(fk(n))(k∈N*),則f2009(8)=
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

16、若f(n)表示n2-2n+2(n∈N+)的各位上的數(shù)字之和,例如142-2×14+2=170,1+7+0=8,所以f(14)=8.設(shè)f1(n)=f(n),f2(n)=f[(f1(n)],…,fk+1(n)=f[(fk(n)](k∈N+),則f2010(17)=
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(n)表示n2+1(n∈N×)的各位數(shù)字之和,如142+1=197,1+9+7=17,f(14)=17,記f1(n)=f(n),f2(n)=f[f1(n)],…,fk+1(n)=f[fk(n),k∈N×,則f2010(8)的值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•洛陽二模)給出下列命題:
①設(shè)向量
e1
,
e2
滿足|
e1
|=2,|
e2
|=1,
e1
e2
的夾角為
π
3
.若向量2t
e1
+7
e2
e1
+t
e2
的夾角為鈍角,則實(shí)數(shù)t的取值范圍是(-7,-
1
2
);
②已知一組正數(shù)x1,x2,x3,x4的方差為s2=
1
4
(x12+x22+x32+x42)-4,則x1+1,x2+1,x3+1,x4+1的平均數(shù)為1
③設(shè)a,b,c分別為△ABC的角A,B,C的對邊,則方程x2+2ax+b2=o與x2+2cx-b2=0有公共根的充要條件是A=90°;
④若f(n)表示n2+1(n∈N)的各位上的數(shù)字之和,如112+1=122,1+2+2=5,所以f(n)=5,記f1(n)=f(n),f2(n)=f[f1(n)],…fk+1(n)=f[fk(n)],k∈N,則f20(5)=11.
上面命題中,假命題的序號是
 (寫出所有假命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若f(n)表示n2+1(n∈N*)的各位數(shù)字之和,如:62=36,36+1=37,3+7=10,則f(6)=10,記f1(n)=f(n),f2(n)=f(f1(n)),…fk+1(n)=f(fk(n))(k∈N*),則f2009(8)=______.

查看答案和解析>>

同步練習(xí)冊答案