給定直線l:y=2x-16,拋物線C:y2=ax(a>0).
(1)當(dāng)拋物線C的焦點在直線l上時,確定拋物線C的方程;
(2)若△ABC的三個頂點都在(1)所確定的拋物線C上,且點A的縱坐標(biāo)ya=8,△ABC的重心恰在拋物線C的焦點上,求直線BC的方程.
BC的直線方程為y+4=-4(x-11),即4x+y-40=0.
(1)∵拋物線的焦點為(,0),代入y=2x-16,得a=32.
∴拋物線方程為y2=32x.
(2)∵yA=8,∴xA=2.
∵F(8,0)為△ABC的重心,∴
(yB+yC)(yB-yC)=32(xB-xC)=-4=kBC,
又中線AF與BC交點坐標(biāo)x==11,y===-4,
∴BC的直線方程為y+4=-4(x-11),即4x+y-40=0.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知為拋物線上一動點,F為拋物線的焦點,定點,則的最小值為(      )
A.1B.2C.3D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線y2=2px與直線ax+y-4=0交于兩點A、B,其中點A的坐標(biāo)為(1,2),設(shè)拋物線的焦點為F,則|FA|+|FB|等于(    )
A.7                     B.3             C.6                 D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過圓錐曲線焦點的直線與此圓錐曲線交于P1、P2兩點,以P1P2為直徑的圓與此焦點對應(yīng)的準(zhǔn)線相切,則此圓錐曲線是(   )
A.橢圓B.雙曲線C.拋物線D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y2=-8mx(m>0),是否存在過拋物線的焦點F的弦PQ,使△POQ的面積最大或最小?若存在,求出PQ所在直線的傾斜角;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

頂點在原點,焦點在x軸上,且截直線2x-y+1=0所得弦長為,求拋物線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線y=4ax2(a>0)的焦點坐標(biāo)為(    )
A.(0,a)B.(0,)
C.(a,0)D.(,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

將拋物線y=4x2繞焦點逆時針方向旋轉(zhuǎn)90°后,所得拋物線的準(zhǔn)線方程是(    )
A.x="2" B.y="-2"C.x=D.x=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線y2=4x關(guān)于直線x+y=0對稱的拋物線的方程是(   )
A.x2=4yB.y2=-4xC.y=-4x2D.x2=-4y

查看答案和解析>>

同步練習(xí)冊答案