如圖所示,平面,四邊形是矩形,,M,N分別是AB,PC的中點,

(1)求平面和平面所成二面角的大小,
(2)求證:平面
(3)當的長度變化時,求異面直線PC與AD所成角的可能范圍.
(1);(2)詳見解析;(3)

試題分析:(1)求二面角大小時,需先找后求,∵平面,則,又,∴可證,從而,則就是平面和平面所成二面角的平面角,∵;(2)可證明直線垂直于面內(nèi)的兩條相交直線,也可利用轉化法,先證明與平行的一直線垂直于面,從而平面,該題中,取中點,連接,可證明四邊形是平行四邊形,從而,先證明⊥面,從而平面;(3)異面直線所成的角是空間角,應該轉化為平面角來解決,仍然應該先找后求,由,則就是異面直線所成的角(或其補角),∵,∴,從而,在中,設,,先確定的范圍,再求的范圍.

試題解析:(1) PA⊥平面ABCD,CD⊥AD,∴PD⊥CD,故∠PDA是平面PCD與平面ABCD所成二面角的平面角,在Rt△PAD中,PA⊥AD,PA=AD,∴∠PDA=45°       3分
(2)如圖,取PD中點E,連結AE,EN,又M,N分別是AB,PC的中點,∴ENCDAB ∴AMNE是平行四邊形 ∴MN∥AE,在等腰Rt△PAD中,AE是斜邊的中線,∴AE⊥PD,又CD⊥AD,CD⊥PD ∴CD⊥平面PAD,∴CD⊥AE,又PD∩CD=D,∴AE⊥平面PCD,∴MN⊥平面PCD。     8分
(3)由,則就是異面直線所成的角(或其補角),∵,∴,∴,在中,設,,∴,又∵,∴,即異面直線所成的角的范圍是        12分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知四棱錐平面,底面為直角梯形,,且,.

(1)點在線段上運動,且設,問當為何值時,平面,并證明你的結論;
(2)當,且求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐中,平面平面,是等邊三角形,已知.

(1)設上的一點,證明:平面平面;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱柱的底面是平行四邊形,且,,,的中點,平面.

(Ⅰ)證明:平面平面
(Ⅱ)若,試求異面直線所成角的余弦值;
(Ⅲ)在(Ⅱ)的條件下,試求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,AC為的直徑,D為的中點,E為BC的中點.

(Ⅰ)求證:AB∥DE;
(Ⅱ)求證:2AD·CD=AC·BC.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列說法中正確的是( 。
A.棱柱的面中,至少有兩個面互相平行
B.棱柱的兩個互相平行的平面一定是棱柱的底面
C.棱柱的一條側棱的長叫做棱柱的高
D.棱柱的側面是平行四邊形,但它的底面一定不是平行四邊形

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列命題正確的是(  )
A.有兩個面平行,其余各面都是四邊形的幾何體叫棱柱.
B.有兩個面平行,其余各面都是平行四邊形的幾何體叫棱柱.
C.有兩個面平行,其余各面都是四邊形,并且每相鄰兩個四邊形的公共邊都互相平行的幾何體叫棱柱.
D.用一個平面去截棱錐,底面與截面之間的部分組成的幾何體叫棱臺.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

一個正方體的展開圖如圖所示,A、B、C、D為原正方體的頂點,則在原來的正方體中( )

A.         B.相交
C.         D.所成的角為 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,在多面體ABCDEF中,已知面ABCD是邊長為3的正方形,EF//AB,EF=,EF與面AC的距離為2,則該多面體的體積為____________.

查看答案和解析>>

同步練習冊答案