一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A、18+18π
B、18+9π
C、54+18π
D、54+9π
考點(diǎn):由三視圖求面積、體積
專(zhuān)題:空間位置關(guān)系與距離
分析:由已知中的三視圖可得該幾何體是兩個(gè)球與一個(gè)長(zhǎng)方體的組合體,分別求出球的體積和長(zhǎng)方體的體積,相加可得答案.
解答: 解:由已知中的三視圖可得該幾何體是兩個(gè)球與一個(gè)長(zhǎng)方體的組合體,
球的半徑R=
3
2

故球的體積為:
4
3
πR3
=
9
2
π
,
長(zhǎng)方體的長(zhǎng)寬高分別為:6,3,1,
故長(zhǎng)方體珠體積為:6×3×1=18,
故組合體的體積V=2×
9
2
π
+18=18+9π,
故選:B
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是由三視圖求體積,解決本題的關(guān)鍵是得到該幾何體的形狀.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2cos2
x
2
-
3
sinx.
(1)求函數(shù)f(x)的最小正周期和值域;
(2)若α為第二象限角,且f(α-
π
3
)=
1
3
,求
cos2α
1+cos2α-sin2α
的值.
(3)將函數(shù)f (x)圖象上每一點(diǎn)的橫坐標(biāo)縮小為原來(lái)的
1
2
,縱坐標(biāo)不變,再向右平移
π
6
個(gè)單位,得到的函數(shù)設(shè)為g(x),求
4
π
2
g(x)dx
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若圓的一條直徑的端點(diǎn)是A(1,0),B(5,0),則此圓的方程是( 。
A、(x-3)2+y2=2
B、(x-1)2+y2=4
C、(x-3)2+y2=4
D、(x-1)2+y2=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2lg(
1-x
1+x
),若f(a)=1,則f(-a)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下面四個(gè)結(jié)論:
①偶函數(shù)的圖象一定與y軸相交;
②奇函數(shù)的圖象一定通過(guò)原點(diǎn);
③偶函數(shù)的圖象關(guān)于y軸對(duì)稱(chēng);
④既是奇函數(shù)又是偶函數(shù)的函數(shù)一定是f(x)=0(定義域關(guān)于原點(diǎn)對(duì)稱(chēng));
其中正確的命題是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(
x
-
1
x
)6
展開(kāi)式中的常數(shù)項(xiàng)是( 。
A、20B、-10
C、-20D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn)求值:
(1)(2a
2
3
b
1
2
)(-6a
1
2
b
1
3
)÷(-3a
1
6
b
5
6
)
;
(2)lg5(lg8+lg1000)+(lg2
3
)2+lg
1
6
+lg0.06.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
sin(
π
3
x-
π
3
)+2sin2
π
6
x-
π
6
)(x∈R).
(1)求函數(shù)f(x)的最小正周期和對(duì)稱(chēng)軸;
(2)計(jì)算f(1)+f(2)+…+f(2013)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x2-x=0}B={x|ax2-2x+a=0}
(1)若2∈B寫(xiě)出集合B所有子集;
(2)若A∩B=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案