【題目】已知F為拋物線C:y2=4x的焦點,過F作兩條互相垂直的直線l1 , l2 , 直線l1與C交于A、B兩點,直線l2與C交于D、E兩點,則|AB|+|DE|的最小值為( )
A.16
B.14
C.12
D.10
科目:高中數(shù)學 來源: 題型:
【題目】已知正整數(shù)數(shù)列滿足,對于給定的正整數(shù),若數(shù)列中首個值為1的項為,我們定義,則_____.設集合,則集合中所有元素的和為_____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校200名學生的數(shù)學期中考試成績頻率分布直方圖如圖所示,其中成績分組區(qū)間是.
(1)求圖中m的值;
(2)根據(jù)頻率分布直方圖,估計這200名學生的平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中間值作代表)和中位數(shù)(四舍五入取整數(shù));
(3)若這200名學生的數(shù)學成績中,某些分數(shù)段的人數(shù)x與英語成績相應分數(shù)段的人數(shù)y之比如下表所示,求英語成績在的人數(shù).
分數(shù)段 | [70,80) | [80,90) | [90,100) | [100,110) | [110,120) |
x:y | 1:2 | 2:1 | 6:5 | 1:2 | 1:1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)φ(x)= ,a>0
(1)若函數(shù)f(x)=lnx+φ(x),在(1,2)上只有一個極值點,求a的取值范圍;
(2)若g(x)=|lnx|+φ(x),且對任意x1 , x2∈(0,2],且x1≠x2 , 都有 <﹣1,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的焦距為,且過點.
(Ⅰ)求橢圓的方程;
(Ⅱ)設為橢圓上一點,過點作軸的垂線,垂足為.取點,連接,過點作的垂線交軸于點.點是點關于軸的對稱點,作直線,問這樣作出的直線是否與橢圓一定有唯一的公共點?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓 + =1(a>b>0)的左焦點為F,右頂點為A,離心率為 .已知A是拋物線y2=2px(p>0)的焦點,F(xiàn)到拋物線的準線l的距離為 .
(Ⅰ)求橢圓的方程和拋物線的方程;
(Ⅱ)設l上兩點P,Q關于x軸對稱,直線AP與橢圓相交于點B(B異于A),直線BQ與x軸相交于點D.若△APD的面積為 ,求直線AP的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】微信是現(xiàn)代生活進行信息交流的重要工具,據(jù)統(tǒng)計,某公司名員工中的人使用微信,其中每天使用微信時間在一小時以內(nèi)的有,其余的員工每天使用微信的時間在一小時以上,若將員工分成青年(年齡小于歲)和中年(年齡不小于歲)兩個階段,那么使用微信的人中是青年人.若規(guī)定:每天使用微信時間在一小時以上為經(jīng)常使用微信,那么經(jīng)常使用微信的員工中是青年人.
(1)若要調查該公司使用微信的員工經(jīng)常使用微信與年齡的關系,列出列聯(lián)表:
青年人 | 中年人 | 總計 | |
經(jīng)常使用微信 | |||
不經(jīng)常使用微信 | |||
總計 |
(2)由列聯(lián)表中所得數(shù)據(jù)判斷,是否有百分之的把握認為“經(jīng)常使用微信與年齡有關”?
0.010 | 0.001 | |
6.635 | 10.828 |
附:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,是半圓的直徑,垂直于半圓所在的平面,點是圓周上不同于的任意一點,分別為的中點,則下列結論正確的是( )
A.B.平面平面
C.與所成的角為45°D.平面
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com