設F1,F2分別是橢圓+=1的左、右焦點,P為橢圓上一點,M是F1P的中點,|OM|=3,則P點到橢圓左焦點距離為    .
4
因為|OM|=3,數(shù)形結(jié)合得|PF2|=6,
又|PF1|+|PF2|=10,∴|PF1|=4.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

設橢圓C1:+=1(a>b>0),拋物線C2:x2+by=b2.

(1)若C2經(jīng)過C1的兩個焦點,求C1的離心率;
(2)設A(0,b),Q(3,b),又M,N為C1與C2不在y軸上的兩個交點,若△AMN的垂心為B(0,b),且△QMN的重心在C2上,求橢圓C1和拋物線C2的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若橢圓經(jīng)過原點,且焦點分別為,則其離心率為( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

直線y=kx+1,當k變化時,此直線被橢圓+y2=1截得的最大弦長是(  )
A.4B.
C.2D.不能確定

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設橢圓方程為x2+=1,過點M(0,1)的直線l交橢圓于A,B兩點,O是坐標原點,點P滿足=(+),當l繞點M旋轉(zhuǎn)時,動點P的軌跡方程為     .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知曲線C上的動點M(x,y),向量a=(x+2,y)和b=(x-2,y)滿足|a|+|b|=6,則曲線C的離心率是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

過橢圓Γ=1(ab>0)右焦點F2的直線交橢圓于A,B兩點,F1為其左焦點,已知△AF1B的周長為8,橢圓的離心率為.
(1)求橢圓Γ的方程;
(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓Γ恒有兩個交點P,Q,且?若存在,求出該圓的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知F1, F2是橢圓x2+2y2=6的兩個焦點,點M在此橢圓上且∠F1MF2=60°,則△MF1F2的面積等于(  )
A.B.C.2D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知A、B是橢圓=1(ab>0)和雙曲線=1(a>0,b>0)的公共頂點.P是雙曲線上的動點,M是橢圓上的動點(P、M都異于A、B),且滿足λ(),其中λ∈R,設直線APBP、AMBM的斜率分別記為k1、k2、k3、k4,k1k2=5,則k3k4=________.

查看答案和解析>>

同步練習冊答案