精英家教網 > 高中數學 > 題目詳情

【題目】如圖所示,在三棱錐中,底面,,,,的中點.

(1)求證:

(2)若二面角的大小為,求三棱錐的體積.

【答案】(1)見解析;(2)

【解析】

1)由余弦定理求出BC,因為的中點,得BDCD,因為,平方求出AD,利用勾股定理得ABAD,結合PAAD,得AD⊥平面PAB,從而ADPB得證.

2分別以直線ABAD,APx軸,y軸,z軸建立空間直角坐標系,設PAa,求出平面PBC的法向量,平面PAB的法向量,利用向量法求出a,然后求解VPABC×SABC×PA即可.

(1)在中,由余弦定理得,則

因為的中點,則

因為,則

,所以

因為,則

因為底面,則,所以平面,從而

(2)分別以直線,,軸,軸,軸建立空間直角坐標系,如圖所示.

,則點,,所以

設平面的法向量為,則,即

,則,所以

因為為平面的法向量,

,即

所以,解得,所以

所以

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知橢圓的短軸端點為,,點是橢圓上的動點,且不與,重合,點滿足,.

(Ⅰ)求動點的軌跡方程;

(Ⅱ)求四邊形面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】網約車的興起豐富了民眾出行的選擇,為民眾出行提供便利的同時也解決了很多勞動力的就業(yè)問題,據某著名網約車公司“滴滴打車”官網顯示,截止目前,該公司已經累計解決退伍軍人轉業(yè)為兼職或專職司機三百多萬人次,梁某即為此類網約車司機,據梁某自己統計某一天出車一次的總路程數可能的取值是20、22、24、26、28、,它們出現的概率依次是、、、t、

(1)求這一天中梁某一次行駛路程X的分布列,并求X的均值和方差;

(2)網約車計費細則如下:起步價為5元,行駛路程不超過時,租車費為5元,若行駛路程超過,則按每超出(不足也按計程)收費3元計費.依據以上條件,計算梁某一天中出車一次收入的均值和方差.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某個公園有個池塘,其形狀為直角△ABC,∠C=90°,AB=2百米,BC=1百米.

(1)現在準備養(yǎng)一批供游客觀賞的魚,分別在AB、BCCA上取點D,E,F,如圖(1),使得EF‖AB,EF⊥ED,在△DEF喂食,求△DEF 面積SDEF的最大值;

(2)現在準備新建造一個荷塘,分別在ABBC,CA上取點DE,F,如圖(2),建造△DEF

連廊(不考慮寬度)供游客休憩,且使△DEF為正三角形,求△DEF邊長的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱錐中,,,的中點.

(1)證明:平面;

(2)若點在棱上,且二面角,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】1)求證:橢圓中斜率為的平行弦的中點軌跡必過橢圓中心;

2)用作圖方法找出下面給定橢圓的中心;

3)我們把由半橢圓與半橢圓合成的曲線稱作果圓,其中,,.如圖,設點,是相應橢圓的焦點,果圓,軸的交點. 連結果圓上任意兩點的線段稱為果圓的弦.試研究:是否存在實數,使斜率為果圓平行弦的中點軌跡總是落在某個橢圓上?若存在,求出所有可能的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知雙曲線的中心在原點,焦點F1,F2在坐標軸上,離心率為,且過點.

(1)求雙曲線的方程;

(2)若點M(3,m)在雙曲線上,試求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數處取得極小值

(1)求實數的值;

(2)設,討論函數的零點個數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】ABC中,A(0,1)AB邊上的高CD所在直線的方程為x2y40,AC邊上的中線BE所在直線的方程為2xy30.

(1)求直線AB的方程;

(2)求直線BC的方程;

(3)BDE的面積.

查看答案和解析>>

同步練習冊答案