【題目】已知圓錐曲線: (為參數(shù))和定點(diǎn), , 是此圓錐曲線的左、右焦點(diǎn).
(1)以原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,求直線的極坐標(biāo)方程;
(2)經(jīng)過(guò)且與直線垂直的直線交此圓錐曲線于, 兩點(diǎn),求的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿分14分)如圖,已知橢圓:,其左右焦點(diǎn)為及,過(guò)點(diǎn)的直線交橢圓于兩點(diǎn),線段的中點(diǎn)為,的中垂線與軸和軸分別交于兩點(diǎn),且、、構(gòu)成等差數(shù)列.
(1)求橢圓的方程;
(2)記△的面積為,△(為原點(diǎn))的面積為.試問(wèn):是否存在直線,使得?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某化工廠從今年一月起,若不改善生產(chǎn)環(huán)境,按生產(chǎn)現(xiàn)狀,每月收入為70萬(wàn)元,同時(shí)將受到環(huán)保部門的處罰,第一個(gè)月罰3萬(wàn)元,以后每月增加2萬(wàn)元.如果從今年一月起投資500萬(wàn)元添加回收凈化設(shè)備(改造設(shè)備時(shí)間不計(jì)),一方面可以改善環(huán)境,另一方面也可以大大降低原料成本.據(jù)測(cè)算,添加回收凈化設(shè)備并投產(chǎn)后的前5個(gè)月中的累計(jì)生產(chǎn)凈收入是生產(chǎn)時(shí)間個(gè)月的二次函數(shù)(是常數(shù)),且前3個(gè)月的累計(jì)生產(chǎn)凈收入可達(dá)309萬(wàn),從第6個(gè)月開(kāi)始,每個(gè)月的生產(chǎn)凈收入都與第5個(gè)月相同.同時(shí),該廠不但不受處罰,而且還將得到環(huán)保部門的一次性獎(jiǎng)勵(lì)100萬(wàn)元.
(1)求前8個(gè)月的累計(jì)生產(chǎn)凈收入的值;
(2)問(wèn)經(jīng)過(guò)多少個(gè)月,投資開(kāi)始見(jiàn)效,即投資改造后的純收入多于不改造時(shí)的純收入.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓錐曲線: (為參數(shù))和定點(diǎn), , 是此圓錐曲線的左、右焦點(diǎn).
(1)以原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,求直線的極坐標(biāo)方程;
(2)經(jīng)過(guò)且與直線垂直的直線交此圓錐曲線于, 兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某運(yùn)動(dòng)員每次投籃命中的概率都為40%,現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率:先由計(jì)算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),指定1,2,3,4表示命中;5,6,7,8,9,0表示不命中;再以每三個(gè)隨機(jī)數(shù)為一組,代表三次投籃的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù),據(jù)此估計(jì),該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率為( )
137 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
A.0.40 B.0.30 C.0.35 D.0.25
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一盒中裝有除顏色外其余均相同的12個(gè)小球,從中隨機(jī)取出1個(gè)球,取出紅球的概率為,取出黑球的概率為,取出白球的概率為,取出綠球的概率為.求:
(1)取出的1個(gè)球是紅球或黑球的概率;
(2)取出的1個(gè)球是紅球或黑球或白球的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知四棱錐中, 平面,底面是菱形,且. , 、的中點(diǎn)分別為, .
(Ⅰ)求證.
(Ⅱ)求二面角的余弦值.
(Ⅲ)在線段上是否存在一點(diǎn),使得平行于平面?若存在,指出在上的位置并給予證明,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】讀下列各題所給的程序,依據(jù)程序畫(huà)出程序框圖,并說(shuō)明其功能:
(1)INPUT “x=”;x
IF x>1 OR x<-1 THEN
y=1
ELSE y=0
END IF
PRINE y
END
(2)INPUT “輸入三個(gè)正數(shù)a,b,c=”;a,b,c
IF a+b>c AND a+c>b AND b+c>a THEN
p=(a+b+c)/2
S=SQR(p*(p-a)*(p-b)*(p-c))
PRINT “三角形的面積S=”S
ELSE
PRINT “構(gòu)不成三角形”
END IF
END
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com