設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)A.(1,1),若點(diǎn)B(x,y)滿足,則取得最小值時,點(diǎn)B的個數(shù)是(    )

A.  1         B. 2            C.3        D.無數(shù)個

 

【答案】

B

【解析】解:先畫出點(diǎn)B(x,y)滿足 的平面區(qū)域如圖,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012111918263637882697/SYS201211191827040038270441_DA.files/image002.png">=x+y,所以當(dāng)在點(diǎn)C(2,1)和點(diǎn)B(1,2)處時,x+y最。礉M足要求的點(diǎn)有兩個.故答案為:(1,2),(2,1).,選B

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)A(1,1),若點(diǎn)B(x,y)滿足
x2+y2-2x-2y+1≥0 
0≤x≤1
0≤y≤1
,則
OA
OB
 取得最大值時,點(diǎn)B的個數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)A(1,1),若點(diǎn)B(x,y)滿足
x2+y2-2x-2y+1≥0
1≤x≤2
1≤y≤2
OA
OB
取得最大值時,點(diǎn)B的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)A(4,3),B是x正半軸上一點(diǎn),則△OAB中
OB
AB
的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•威海二模)設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)A(1,-2),若點(diǎn)M(x,y)為平面區(qū)域
x≥-1
x+2y≥3
2x+y≤3
上的一個動點(diǎn),則
OA
OM
的取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為e,且b,e,
1
3
為等比數(shù)列,曲線y=8-x2恰好過橢圓的焦點(diǎn).
(1)求橢圓C1的方程;
(2)設(shè)雙曲線C2
x2
m2
-
y2
n2
=1
的頂點(diǎn)和焦點(diǎn)分別是橢圓C1的焦點(diǎn)和頂點(diǎn),設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)A,B分別是C1和C2上的點(diǎn),問是否存在A,B滿足
OA
=
1
2
OB
.請說明理由.若存在,請求出直線AB的方程.

查看答案和解析>>

同步練習(xí)冊答案