已知函數(shù)f(2x+1)的定義域為(0,1),求f(x)的定義域.
考點:函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)復(fù)合函數(shù)定義域之間的關(guān)系即可得到結(jié)論.
解答: 解:∵函數(shù)f(2x+1)的定義域為(0,1),
∴0<x<1,
則1<2x+1<3,即f(x)的定義域(1,3).
點評:本題主要考查函數(shù)定義域的求解,根據(jù)復(fù)合函數(shù)定義域之間的關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在五邊形ABCDE中(圖一),BD是AC的垂直平分線,O為垂足.ED∥AC,AE∥BD,AB⊥BC.沿對角線AC將四邊形ACDE折起,使平面ACDE⊥平面ABC(圖二).

(1)求證:平面EBC⊥平面EAB;
(2)若OD=OB=1,求點A到平面DBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
-(x-
1
2
)2+
1
12
,-
1
2
-
3
6
≤x≤
1
2
x3
x+1
,                        
1
2
<x≤2
和函數(shù)g(x)=asin
π
6
x-a+1 (a>0),若存在x1,x2∈[0,1]使得f(x1)=g(x2)成立,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

觀察下列各不等式:
1+
1
22
3
2

1+
1
22
+
1
32
5
3
,
1+
1
22
+
1
32
+
1
42
7
4
,
1+
1
22
+
1
32
+
1
42
+
1
52
9
5


(1)由上述不等式,歸納出一個與正整數(shù)n(n≥2)有關(guān)的一般性結(jié)論;
(2)用數(shù)學(xué)歸納法證明你得到是結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1+ln(x+1)
x
(x>0).
(Ⅰ)試判斷函數(shù)f(x)在(0,+∞)上單調(diào)性并證明你的結(jié)論;
(Ⅱ)若f(x)>
k
x+1
?x∈(0,+∞)恒成立,求正整數(shù)k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a1>0,an+1=
an
1+an
(n=1,2,…)
(1)求證:an+1≠an;
(2)令a1=
1
2
,寫出a2,a3,a4,a5的值,觀察并歸納出這個數(shù)列的通項公式an(不要求證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知公差不為0的等差數(shù)列{an}的前n項和為Sn,S3=a4+2,且a1,a2-1,a3-1成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)數(shù)列{
1
anan+1
}的前n項和為Tn,求證:
1
3
≤Tn
1
2
(n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l經(jīng)過直線3x+4y-2=0與直線2x+3y-2=0的交點P,且垂直于直線x-2y-1=0.
(Ⅰ)求直線l的方程;
(Ⅱ)求直線l與兩坐標(biāo)軸圍成的三角形的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=f(x)是函數(shù)y=log 
1
2
x的反函數(shù),則f(x)=
 

查看答案和解析>>

同步練習(xí)冊答案