【題目】已知函數(shù)f(x)是奇函數(shù),當(dāng)x>0時(shí),f(x)=ax(x>0且a≠1),且f(log 4)=﹣3,則a的值為( )
A.
B.3
C.9
D.
【答案】A
【解析】解:∵奇函數(shù)f(x)滿足f(log 4)=﹣3,log 4=﹣2<0,
∴f(2)=3
又∵當(dāng)x>0時(shí),f(x)=ax(x>0且a≠1),2>0
∴f(2)=a2=3,解之得a= (舍負(fù))
故選A
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)奇偶性的性質(zhì)的相關(guān)知識,掌握在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】通過隨機(jī)詢問110名性別不同的大學(xué)生是否愛好某項(xiàng)運(yùn)動,得到如下的列聯(lián)表:
男 | 女 | 合 計(jì) | |
愛好 | 40 | 20 | 60 |
不愛好 | 20 | 30 | 50 |
合 計(jì) | 60 | 50 | 110 |
根據(jù)上述數(shù)據(jù)能得出的結(jié)論是( )
(參考公式與數(shù)據(jù):X2= .當(dāng)X2>3.841時(shí),有95%的把握說事件A與B有關(guān);當(dāng)X2>6.635時(shí),有99%的把握說事件A與B有關(guān); 當(dāng)X2<3.841時(shí)認(rèn)為事件A與B無關(guān).)
A.有99%的把握認(rèn)為“愛好該項(xiàng)運(yùn)動與性別有關(guān)”
B.有99%的把握認(rèn)為“愛好該項(xiàng)運(yùn)動與性別無關(guān)”
C.在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動與性別有關(guān)”
D.在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動與性別無關(guān)”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某測試團(tuán)隊(duì)為了研究“飲酒”對“駕車安全”的影響,隨機(jī)選取名駕駛員先后在無酒狀態(tài)、酒后狀態(tài)下進(jìn)行“停車距離”測試,測試的方案:電腦模擬駕駛,以某速度勻速行駛,記錄下駕駛員的“停車距離”(駕駛員從看到意外情況到車子停下所需要的距離),無酒狀態(tài)與酒后狀態(tài)下的試驗(yàn)數(shù)據(jù)分別列于表
停車距離(米) | |||||
頻數(shù) | 26 | 8 | 2 |
表
平均每毫升血液酒精含量 毫克 | 10 | 30 | 50 | 70 | 90 | /tr>
平均停車距離米 | 30 | 50 | 60 | 70 | 90 |
已知表 數(shù)據(jù)的中位數(shù)估計(jì)值為,回答以下問題.
(Ⅰ)求的值,并估計(jì)駕駛員無酒狀態(tài)下停車距離的平均數(shù);
(Ⅱ)根據(jù)最小二乘法,由表的數(shù)據(jù)計(jì)算關(guān)于的回歸方程;
(Ⅲ)該測試團(tuán)隊(duì)認(rèn)為:駕駛員酒后駕車的平均“停車距離”大于(Ⅰ)中無酒狀態(tài)下的停車距離平均數(shù)的倍,則認(rèn)定駕駛員是“醉駕”.請根據(jù)(Ⅱ)中的回歸方程,預(yù)測當(dāng)每毫升血液酒精含量大于多少毫克時(shí)為“醉駕”?
(附:回歸方程中, )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , 公差d≠0,且S3+S5=50,a1 , a4 , a13成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足 + +…+ =an﹣1(n∈N*),求數(shù)列{nbn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(x﹣a)2lnx(a為常數(shù)).
(1)若f(x)在(1,f(1))處的切線與直線2x+2y﹣3=0垂直.
(ⅰ)求實(shí)數(shù)a的值;
(ⅱ)若a非正,比較f(x)與x(x﹣1)的大。
(2)如果0<a<1,判斷f(x)在(a,1)上是否有極值,若有極值是極大值還是極小值?若無極值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)在以為直徑的圓上, 垂直與圓所在平面, 為的垂心.
(1)求證:平面平面;
(2)若,點(diǎn)在線段上,且,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù),(是自然對數(shù)的底數(shù)).
(Ⅰ)討論函數(shù)極值點(diǎn)的個(gè)數(shù);
(Ⅱ)若,且命題“,”是假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com