已知焦點(diǎn)在軸上的橢圓C1=1經(jīng)過A(1,0)點(diǎn),且離心率為

  (I)求橢圓C1的方程;

  (Ⅱ)過拋物線C2(h∈R)上P點(diǎn)的切線與橢圓C1交于兩點(diǎn)M、N,記線段MN與PA的中點(diǎn)分別為G、H,當(dāng)GH與軸平行時(shí),求h的最小值.

解:(Ⅰ)由題意可得,……………2分

解得

所以橢圓的方程為 .………………4分

(Ⅱ)設(shè),由 ,

拋物線在點(diǎn)處的切線的斜率為 ,

所以的方程為 ,……………5分

代入橢圓方程得 ,

化簡得

與橢圓有兩個(gè)交點(diǎn),故

     ①

設(shè),中點(diǎn)橫坐標(biāo)為,則

,   …………………8分

設(shè)線段的中點(diǎn)橫坐標(biāo)為,

由已知得,  ②………………10分

顯然,   ③

當(dāng)時(shí),,當(dāng)且僅當(dāng)時(shí)取得等號,此時(shí)不符合①式,故舍去;

當(dāng)時(shí),,當(dāng)且僅當(dāng)時(shí)取得等號,此時(shí),滿足①式。

綜上,的最小值為1.………………12分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(08年廈門外國語學(xué)校模擬)(12分)

已知焦點(diǎn)在軸上的橢圓是它的兩個(gè)焦點(diǎn).

(Ⅰ)若橢圓上存在一點(diǎn)P,使得試求的取值范圍;

(Ⅱ)若橢圓的離心率為,經(jīng)過右焦點(diǎn)的直線與橢圓相交于A、B兩點(diǎn),且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省安慶市高三模擬考試(三模)理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知焦點(diǎn)在軸上的橢圓和雙曲線的離心率互為倒數(shù),它們在第一象限交點(diǎn)的坐標(biāo)為,設(shè)直線(其中為整數(shù)).

(1)試求橢圓和雙曲線的標(biāo)準(zhǔn)方程;

(2)若直線與橢圓交于不同兩點(diǎn),與雙曲線交于不同兩點(diǎn),問是否存在直線,使得向量,若存在,指出這樣的直線有多少條?若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆江西南昌八一、洪都、麻丘中學(xué)高二上期中數(shù)學(xué)試卷(解析版) 題型:選擇題

已知焦點(diǎn)在軸上的橢圓的離心率為,它的長軸長等于圓的半徑,則橢圓的標(biāo)準(zhǔn)方程是(   )

A.    B.     C.         D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省高三下學(xué)期2月月考理科數(shù)學(xué)試卷 題型:解答題

(本題滿分15分)已知焦點(diǎn)在軸上的橢圓過點(diǎn),且離心率為,為橢圓的左頂點(diǎn).

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)已知過點(diǎn)的直線與橢圓交于,兩點(diǎn).

(。┤糁本垂直于軸,求的大小;

(ⅱ)若直線軸不垂直,是否存在直線使得為等腰三角形?如果存在,求出直線的方程;如果不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年黑龍江省高二下學(xué)期期中考試數(shù)學(xué)(文) 題型:選擇題

1.         已知焦點(diǎn)在軸上的橢圓的兩個(gè)焦點(diǎn)分別為, 且,弦過焦點(diǎn),則的周長為

A.            B.               C.           D.

 

查看答案和解析>>

同步練習(xí)冊答案