【題目】已知函數(shù)f(x)=lnx+ax2
(1)討論f(x)的單調(diào)性;
(2)設(shè)a>1,若對任意x1 , x2∈(0,+∞),恒有|f(x1)﹣f(x2)|≥4|x1﹣x2|,求a的取值范圍.

【答案】
(1)

解:f(x)的定義域是(0,+∞),

f′(x)= ,(x>0),

a≥0時,f′(x)>0,故f(x)在(0,+∞)遞增,

a<0時,令f′(x)>0,解得:0<x< ,

令f′(x)<0,解得:x> ,

故函數(shù)f(x)在(0, )遞增,在( ,+∞)遞減


(2)

解:不妨設(shè)x1≤x2,而a>1,

由(1)得:f(x)在(0,+∞)遞增,

從而對任意x1,x2∈(0,+∞),|f(x1)﹣f(x2)|≥4|x1﹣x2|

等價于x1,x2∈(0,+∞),f(x2)﹣4x2≥f(x1)﹣4x1

令g(x)=f(x)﹣4x,則g′(x)= +2ax﹣4

① 等價于g(x)在(0,+∞)單調(diào)遞增,即 +2ax﹣4≥0.

從而2a≥ = +4,∴a≥2

故a的取值范圍為[2,+∞)


【解析】
【考點精析】解答此題的關(guān)鍵在于理解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識,掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減,以及對函數(shù)的最大(小)值與導(dǎo)數(shù)的理解,了解求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校在本校任選了一個班級,對全班50名學(xué)生進行了作業(yè)量的調(diào)查,根據(jù)調(diào)查結(jié)果統(tǒng)計后,得到如下的列聯(lián)表,已知在這50人中隨機抽取1人,認(rèn)為作業(yè)量大的概率為.

認(rèn)為作業(yè)量大

認(rèn)為作業(yè)量不大

合計

男生

18

女生

17

合計

50

(Ⅰ)請完成上面的列聯(lián)表;

(Ⅱ)根據(jù)列聯(lián)表的數(shù)據(jù),能否有的把握認(rèn)為“認(rèn)為作業(yè)量大”與“性別”有關(guān)?

附表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

span>5.024

6.635

10.828

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求曲線在點處的切線方程;

(2)求函數(shù)的零點和極值;

(3)若對任意,都有成立,求實數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙、丁四位同學(xué)一起去向老師詢問各自的分班情況,老師說:你們四人中有位分到班,位分到班,我現(xiàn)在給甲看乙、丙的班級,給乙看丙的班級,給丁看甲的班級.看后甲對大家說:我還是不知道我的班級,根據(jù)以上信息,則( )

A. 乙可以知道四人的班級 B. 丁可以知道四人的班級

C. 乙、丁可以知道對方的班級 D. 乙、丁可以知道自己的班級

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐的底面是正方形,底面.

(1)求證:直線平面;

(2)當(dāng)的值為多少時,二面角的大小為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-5:不等式選講
已知函數(shù)f(x)=log2(|x+1|+|x﹣2|﹣m).
(1)當(dāng)m=7時,求函數(shù)f(x)的定義域;
(2)若關(guān)于x的不等式f(x)≥2的解集是R,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,當(dāng)P(x,y)不是原點時,定義P的“伴隨點”為P′( );當(dāng)P是原點時,定義P的“伴隨點”為它自身,平面曲線C上所有點的“伴隨點”所構(gòu)成的曲線C′定義為曲線C的“伴隨曲線”.現(xiàn)有下列命題:
①若點A的“伴隨點”是點A′,則點A′的“伴隨點”是點A;
②單位圓的“伴隨曲線”是它自身;
③若曲線C關(guān)于x軸對稱,則其“伴隨曲線”C′關(guān)于y軸對稱;
④一條直線的“伴隨曲線”是一條直線.
其中的真命題是(寫出所有真命題的序列).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD= AD.E為棱AD的中點,異面直線PA與CD所成的角為90°.

(1)在平面PAB內(nèi)找一點M,使得直線CM∥平面PBE,并說明理由;
(2)若二面角P﹣CD﹣A的大小為45°,求直線PA與平面PCE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法:①設(shè)有一個回歸方程,變量增加一個單位時,平均增加個單位;②線性回歸直線必過必過點;③在吸煙與患肺病這兩個分類變量的計算中,從獨立性檢驗知,有的把握認(rèn)為吸煙與患肺病有關(guān)系時,我們說某人吸煙,那么他有的可能患肺;其中錯誤的個數(shù)是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案