【題目】數(shù)列{an}滿足a1=2,an+1=an2+6an+6(n∈N×
(1)設Cn=log5(an+3),求證{Cn}是等比數(shù)列;
(2)求數(shù)列{an}的通項公式;
(3)設bn= ,數(shù)列{bn}的前n項和為Tn , 求證:﹣ ≤Tn<﹣

【答案】
(1)解:由an+1=an2+6an+6得an+1+3=(an+3)2,

=2 ,即cn+1=2cn

∴{cn}是以2為公比的等比數(shù)列.


(2)解:又c1=log55=1,

∴cn=2n1,即 =2n1

∴an+3=

故an= ﹣3


(3)解:∵bn= = ,∴Tn= =﹣

又0< =

∴﹣ ≤Tn<﹣


【解析】(1)由已知可得,an+1+3=(an+3)2 , 利用構造法令Cn=log5(an+3),則可得 ,從而可證數(shù)列{cn}為等比數(shù)列;(2)由(1)可先求數(shù)列cn , 代入cn=log5(an+3)可求an;(3)把(2)中的結果代入整理可得, ,則代入Tn=b1+b2+…+bn相消可證
【考點精析】關于本題考查的等比關系的確定和數(shù)列的前n項和,需要了解等比數(shù)列可以通過定義法、中項法、通項公式法、前n項和法進行判斷;數(shù)列{an}的前n項和sn與通項an的關系才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,AB是圓O的直徑,G是AB延長線上的一點,GCD是圓O的割線,過點G作AG的垂線,交直線AC于點E,交直線 AD于點F,過點G作圓O的切線,切點為H.
(1)求證:C,D,E,F(xiàn)四點共圓;
(2)若GH=8,GE=4,求EF的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是定義在上的奇函數(shù),當時, .

1)求的解析式;

(2)解不等式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在Rt△ABC中,∠C=90°,AC=4,BC=2,D是BC的中點,那么( =;若E是AB的中點,P是△ABC(包括邊界)內任一點.則 的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣ (m∈R)在區(qū)間[1,e]取得最小值4,則m=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= sin xcos x+cos2x+a;則f(x)的最小正周期為 , 若f(x)在區(qū)間[﹣ , ]上的最大值與最小值的和為 ,則實數(shù)a的值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于數(shù)列,設表示數(shù)列, , 中的最大項.數(shù)列滿足:

)若,求的前項和.

)設數(shù)列為等差數(shù)列,證明: 或者為常數(shù)),, ,

)設數(shù)列為等差數(shù)列,公差為,且

,

求證:數(shù)列是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設Sn是數(shù)列{an}的前n項和,且a1=﹣1, =Sn , 求數(shù)列{an}的前n項和Sn= , 通項公式an=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形是正方形, , , 都是等邊三角形, 、、分別是線段、、的中點,分別以、為折痕將四個等邊三角形折起,使得、、四點重合于一點,得到一個四棱錐.對于下面四個結論:

為異面直線; 直線與直線所成的角為

平面 平面平面;

其中正確結論的個數(shù)有(

A. B. C. D.

查看答案和解析>>

同步練習冊答案