【題目】下列說法中,正確的命題是(

A.已知隨機(jī)變量服從正態(tài)分布,,則

B.由獨(dú)立性檢驗(yàn)可知,有99%的把握認(rèn)為物理成績與數(shù)學(xué)成績有關(guān),某人數(shù)學(xué)成績優(yōu)秀,則他有99%的可能物理優(yōu)秀

C.以模型去擬合一組數(shù)據(jù)時(shí),為了求出回歸方程,設(shè),將其變換后得到線性方程,則ck的值分別是0.3

D.在回歸分析模型中,殘差平方和越大,說明模型的擬合效果越差

【答案】CD

【解析】

根據(jù)正態(tài)分布,獨(dú)立性檢驗(yàn)、回歸分析的概念判斷.

服從正態(tài)分布,,則,A錯(cuò);

獨(dú)立性檢驗(yàn)可知,有99%的把握認(rèn)為物理成績與數(shù)學(xué)成績有關(guān),并不能說明他物理一定可能優(yōu)秀,B錯(cuò);

把線性方程代入,得,所以,,C正確;

殘差平方和越小,說明模型的擬合效果越好,殘差平方和越大,說明模型的擬合效果越差,D正確.

故選:CD.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖為我國數(shù)學(xué)家趙爽(約3世紀(jì)初)在為《周髀算經(jīng)》作注時(shí)驗(yàn)證勾股定理的示意圖,現(xiàn)在提供5種顏色給其中5個(gè)小區(qū)域涂色,規(guī)定每個(gè)區(qū)域只涂一種顏色,相鄰區(qū)域顏色不相同,則不同的涂色方案共有(

A.360B.720C.480D.420

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】端午節(jié)(每年農(nóng)歷五月初五),是中國傳統(tǒng)節(jié)日,有吃粽子的習(xí)俗.某超市在端午節(jié)這一天,每售出kg粽子獲利潤元,未售出的粽子每kg虧損.根據(jù)歷史資料,得到銷售情況與市場(chǎng)需求量的頻率分布表,如下表所示.該超市為今年的端午節(jié)預(yù)購進(jìn)了kg粽子.(單位:kg,)表示今年的市場(chǎng)需求量,(單位:元)表示今年的利潤.

市場(chǎng)需求量(kg

頻率

0.1

0.2

0.3

0.25

0.15

1)將表示為的函數(shù);

2)在頻率分布表的市場(chǎng)需求量分組中,以各組的區(qū)間中間值代表該組的各個(gè)值,需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中間值的概率(例如:若需求量,則取,且的概率等于需求量落入的頻率),求的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,的三條垂線、、交于點(diǎn),內(nèi)的任意一點(diǎn).求證:、的外心、三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】9名學(xué)生在同一間教室參加一次數(shù)學(xué)競賽,座位排列成33列,用的方格棋盤表示,其中,每個(gè)方格代表一個(gè)座位為了避免舞弊,采用A、B、C三種類型的試卷,要使任何兩個(gè)相鄰的座位(有公共邊的兩個(gè)方格)發(fā)放的試卷類型不同則符合條件的發(fā)放試卷的方法共有________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖有三種類型的紙片(可翻轉(zhuǎn))。

證明:(1)當(dāng)時(shí),的紙板不能分割成若干個(gè)I型、II型的紙片;

(2)當(dāng)n為大于2的偶數(shù)時(shí),的紙板可以分割成若干個(gè)II型、III型的紙片。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為的菱形中,.點(diǎn),分別在邊,上,點(diǎn)與點(diǎn),不重合,,.沿翻折到的位置,使平面平面.

(1)求證:平面;

(2)當(dāng)與平面所成的角為時(shí),求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,已知,為拋物線上兩點(diǎn),為拋物線焦點(diǎn).分別過,作拋物線的切線交于點(diǎn).

(1)若,求;

(2)若,分別交軸于,兩點(diǎn),試問的外接圓是否過定點(diǎn)?若是,求出該定點(diǎn)坐標(biāo),若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線的頂點(diǎn)為A,焦點(diǎn)為F.F作直線l與拋物線交于點(diǎn)P、Q,直線AP、AQ分別與拋物線的準(zhǔn)線交于點(diǎn)M、N.問:直線l滿足什么條件時(shí),三直線PN、QM、AF恒交于一點(diǎn)?

查看答案和解析>>

同步練習(xí)冊(cè)答案