【題目】已知函數(shù).
(1)當(dāng),求的單調(diào)區(qū)間;
(2)若有兩個(gè)零點(diǎn),求的取值范圍.
【答案】(1)見解析;(2)
【解析】
(1)將a=1代入函數(shù),再求導(dǎo)即可得單調(diào)區(qū)間;(2)法一:先對(duì)函數(shù)求導(dǎo):當(dāng)時(shí),在上是減函數(shù),在上是增函數(shù),且x=1為的極值點(diǎn),當(dāng) 所以,,當(dāng),所以此時(shí)有兩個(gè)零點(diǎn);當(dāng)時(shí),函數(shù)只有一個(gè)零點(diǎn);當(dāng)時(shí),再分成三種情況, ,三種情況進(jìn)行討論,最后取并集即得a的范圍。法二:分離參變量,每一個(gè)a對(duì)應(yīng)兩個(gè)x,根據(jù)新構(gòu)造的函數(shù)單調(diào)性和值域,找到相應(yīng)滿足條件的a的范圍即可。
(1) 當(dāng)
令,可得,
當(dāng)時(shí),,函數(shù)在區(qū)間上單調(diào)遞減,
當(dāng)時(shí),,函數(shù)在區(qū)間上單調(diào)遞增。
所以函數(shù)減區(qū)間在區(qū)間,增區(qū)間
(2) 法一:函數(shù)定義域?yàn)?/span>,,
則
⑴當(dāng)時(shí),令可得,
當(dāng)時(shí),,函數(shù)在區(qū)間上單調(diào)遞減,
當(dāng)時(shí),,函數(shù)在區(qū)間上單調(diào)遞增。
且,當(dāng);當(dāng) 所以
所以有兩個(gè)零點(diǎn).,符合
⑵當(dāng),只有一個(gè)零點(diǎn)2,所以舍
⑶設(shè),由得或,
①若,則,所以在單調(diào)遞增,所以零點(diǎn)至多一個(gè).(舍)
②若,則,故時(shí),,當(dāng)時(shí),,所以在,單調(diào)遞增,在單調(diào)遞減。又,要想函數(shù)有兩個(gè)零點(diǎn),必須有,其中.
又因?yàn)楫?dāng)時(shí),,所以
故只有一個(gè)零點(diǎn),舍
③若,則,故時(shí),,;當(dāng)時(shí),,所以在,單調(diào)遞增,在單調(diào)遞減。又極大值點(diǎn),所以只有一個(gè)零點(diǎn)在(舍)
綜上,的取值范圍為。
法二:
,所以不是零點(diǎn).
由,變形可得.
令,則,
即.
當(dāng),;當(dāng),.
所以在遞增;在遞減.
當(dāng)時(shí),,當(dāng)時(shí),.所以當(dāng)時(shí),值域?yàn)?/span>.
當(dāng)時(shí),,當(dāng)時(shí),.所以當(dāng)時(shí),值域?yàn)?/span>.
因?yàn)?/span>有兩個(gè)零點(diǎn),故的取值范圍是
故的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢:()過點(diǎn),且橢圓的離心率為.過橢圓左焦點(diǎn)且斜率為1的直線與橢圓交于,兩點(diǎn).
(1)求橢圓的方程;
(2)求線段的垂直平分線的方程;
(3)求三角形的面積.(為坐標(biāo)原點(diǎn))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,,為常數(shù)),當(dāng)時(shí),只有一個(gè)實(shí)根;當(dāng)時(shí),只有3個(gè)相異實(shí)根,現(xiàn)給出下列4個(gè)命題:
①和有一個(gè)相同的實(shí)根;
②和有一個(gè)相同的實(shí)根;
③的任一實(shí)根大于的任一實(shí)根;
④的任一實(shí)根小于的任一實(shí)根.
其中真命題的序號(hào)是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,點(diǎn)的極坐標(biāo)為,直線的極坐標(biāo)方程為.
(1)求直線的直角坐標(biāo)方程與曲線的普通方程;
(2)若是曲線上的動(dòng)點(diǎn),為線段的中點(diǎn),求點(diǎn)到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)與的圖象上存在關(guān)于軸對(duì)稱的點(diǎn),則實(shí)數(shù)的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線與曲線兩交點(diǎn)所在直線的極坐標(biāo)方程;
(2)若直線的極坐標(biāo)方程為,直線與軸的交點(diǎn)為,與曲線相交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C:(a>0),過點(diǎn)P(-2,-4)的直線l的參數(shù)方程為(t為參數(shù)),l與C分別交于M,N.
(1)寫出C的平面直角坐標(biāo)系方程和l的普通方程;
(2)若|PM|,|MN|,|PN|成等比數(shù)列,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為,若過點(diǎn)且斜率為1的直線與拋物線交于 兩點(diǎn),且.
(1)求拋物線的方程;
(2)若平行于的直線與拋物線相切于點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)集合,或,對(duì)于任意,定義,對(duì)任意,定義,記為集合的元素個(gè)數(shù),求的值;
(2)在等差數(shù)列和等比數(shù)列中,,,是否存在正整數(shù),使得數(shù)列的所有項(xiàng)都在數(shù)列中,若存在,求出所有的,若不存在,說明理由;
(3)已知當(dāng)時(shí),有,根據(jù)此信息,若對(duì)任意,都有,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com