【題目】已知函數(shù)f(x)=,若存在x∈,使得f(x)<2,則實(shí)數(shù)a的取值范圍是________.
【答案】(-1,5)
【解析】
由題意f(x)<2可得-2<x3-ax<2,得到x2-<a<x2+,即
分別判斷不等式左右兩邊函數(shù)的單調(diào)性,求得最值,解不等式得到a的范圍.
解法1 當(dāng)x∈[1,2]時(shí),f(x)<2,等價(jià)于|x3-ax|<2,即-2<x3-ax<2,即x3-2<ax<x3+2,得到x2-<a<x2+,即,
設(shè),因此在單調(diào)遞增,,
設(shè),因此在單調(diào)遞增,,
得到-1<a<5.
解法2 原問(wèn)題可轉(zhuǎn)化為先求:對(duì)任意x∈[1,2],使得f(x)≥2時(shí),實(shí)數(shù)a的取值范圍.
則有x|x2-a|≥2,即|a-x2|≥.
(1)當(dāng)a≥4時(shí),a≥x2+≥22+=5,得到a≥5.
(2)當(dāng)a≤1時(shí),x2-a≥,有a≤x2-≤1-=-1,得到a≤-1.
(3)當(dāng)1<a<4時(shí),|a-x2|≥0,與>0矛盾.
那么有a≤-1或a≥5,故原題答案為-1<a<5.
對(duì)于存在性問(wèn)題,可以直接轉(zhuǎn)化為相應(yīng)函數(shù)的最值問(wèn)題,也可以參數(shù)和變量分離后再轉(zhuǎn)化為函數(shù)的最值問(wèn)題(如解法1);也可以轉(zhuǎn)化為命題的否定即恒成立問(wèn)題來(lái)處理(如解法2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)若函數(shù)在點(diǎn)處的切線(xiàn)方程為,求的值;
(2)若,函數(shù)在區(qū)間內(nèi)有唯一零點(diǎn),求的取值范圍;
(3)若對(duì)任意的,均有,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列各項(xiàng)均為正數(shù),為其前項(xiàng)的和,且成等差數(shù)列.
(1)寫(xiě)出、、的值,并猜想數(shù)列的通項(xiàng)公式;
(2)證明(1)中的猜想;
(3)設(shè),為數(shù)列的前項(xiàng)和.若對(duì)于任意,都有,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司租賃甲、乙兩種設(shè)備生產(chǎn)A,B兩類(lèi)產(chǎn)品,甲種設(shè)備每天能生產(chǎn)A類(lèi)產(chǎn)品5件和B類(lèi)產(chǎn)品10件,乙種設(shè)備每天能生產(chǎn)A類(lèi)產(chǎn)品6件和B類(lèi)產(chǎn)品20件.已知設(shè)備甲每天的租賃費(fèi)為200元,設(shè)備乙每天的租賃費(fèi)為300元,現(xiàn)該公司至少要生產(chǎn)A類(lèi)產(chǎn)品50件,B類(lèi)產(chǎn)品140件,所需租賃費(fèi)最少為__________元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ex+e-x,其中e是自然對(duì)數(shù)的底數(shù).
(1)證明:f(x)是R上的偶函數(shù);
(2)若關(guān)于x的不等式mf(x)≤e-x+m-1在(0,+∞)上恒成立,求實(shí)數(shù)m的取值范圍;
(3)已知正數(shù)a滿(mǎn)足:存在x0∈[1,+∞),使得f(x0)<a(-+3x0)成立.試比較ea-1與ae-1的大小,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)滿(mǎn)足,若在區(qū)間內(nèi)關(guān)于的方程恰有4個(gè)不同的實(shí)數(shù)解,則實(shí)數(shù)的取值范圍是___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圓柱的軸截面是邊長(zhǎng)為2的正方形,點(diǎn)P是圓弧上的一動(dòng)點(diǎn)(不與重合),點(diǎn)Q是圓弧的中點(diǎn),且點(diǎn)在平面的兩側(cè).
(1)證明:平面平面;
(2)設(shè)點(diǎn)P在平面上的射影為點(diǎn)O,點(diǎn)分別是和的重心,當(dāng)三棱錐體積最大時(shí),回答下列問(wèn)題.
(i)證明:平面;
(ii)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三角形中,,平面與半圓弧所在的平面垂直,點(diǎn)為半圓弧上異于的動(dòng)點(diǎn),為的中點(diǎn).
(1)求證:;
(2)求三棱錐體積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com