【題目】某商場舉行優(yōu)惠促銷,顧客僅可以從以下兩種優(yōu)惠方案中選擇一種:方案一:每滿200元減50元;方案二:每滿200元可抽獎(jiǎng)一次.具體規(guī)則是依次從裝有3個(gè)紅球、1個(gè)白球的甲箱,2個(gè)紅球、2個(gè)白球的乙箱,以及裝有1個(gè)紅球、3個(gè)白球的丙箱中各隨機(jī)摸出1個(gè)球,所得結(jié)果和享受的優(yōu)惠如下表:(:所有小球僅顏色有區(qū)別)

(1)若兩個(gè)顧客都選擇方案二,各抽獎(jiǎng)一次,求至少一個(gè)人獲得優(yōu)惠的概率;

(2)若某顧客選擇方案二,請(qǐng)分別計(jì)算該顧客獲得半價(jià)優(yōu)惠的概率、7折優(yōu)惠的概率以及8折優(yōu)惠的概率;

(3)若小明的購物金額為320,你覺得小明應(yīng)該選取哪個(gè)方案,為什么?

【答案】12,,3)第二種方案比較劃算,理由見詳解.

【解析】

1)先求出顧客未獲得優(yōu)惠的概率,由此利用對(duì)立事件概率計(jì)算公式能求出兩個(gè)顧客至少一個(gè)人獲得優(yōu)惠的概率(2)根據(jù)相互獨(dú)立事件同時(shí)發(fā)生的概率公式及互斥事件的概率和公式計(jì)算即可(3)分別求出方案一和方案二的付款金額,由此能比較哪一種方案更劃算.

1)記某顧客獲得優(yōu)惠為事件A,則,

兩個(gè)顧客至少一個(gè)人獲得優(yōu)惠的概率;

2)記某顧客獲得半價(jià)優(yōu)惠的概率、7折優(yōu)惠的概率以及8折優(yōu)惠分別為事件B,C,D,

,

,

3)若選擇方案一,則付款金額為元,

若選擇方案二,記付款金額為元,則可取.

,

,

,

,

,

第二種方案比較劃算.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線=1(a>0,b>0)的離心率為2,焦點(diǎn)到漸近線的距離等于,過右焦點(diǎn)F2的直線l交雙曲線于A,B兩點(diǎn),F1為左焦點(diǎn).

(1)求雙曲線的方程;

(2)若△F1AB的面積等于6,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓

1)若過點(diǎn)的直線l與橢圓C恒有公共點(diǎn),求實(shí)數(shù)a的取值范圍;

2)若存在以點(diǎn)B0,2)為圓心的圓與橢圓C有四個(gè)公共點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),橢圓的離心率為是橢圓E的右焦點(diǎn),直線AF的斜率為2O為坐標(biāo)原點(diǎn).

1)求E的方程;

2)設(shè)過點(diǎn)且斜率為k的直線與橢圓E交于不同的兩MN,且,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是直角梯形,側(cè)棱底面,垂直于為棱上的點(diǎn),.

1)若為棱的中點(diǎn),求證:平面;

2)當(dāng)時(shí),求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐S-ABCD的底面是邊長為1的正方形,則棱SB垂直于底面.

(1)求證:平面SBD⊥平面SAC

(2)若SA與平面SCD所成角的正弦值為,求SB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,雙曲線經(jīng)過點(diǎn),其中一條近線的方程為,橢圓與雙曲線有相同的焦點(diǎn)橢圓的左焦點(diǎn),左頂點(diǎn)和上頂點(diǎn)分別為F,A,B,且點(diǎn)F到直線AB的距離為

求雙曲線的方程;

求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了提高職工的工作積極性,在工資不變的情況下,某企業(yè)給職工兩種追加獎(jiǎng)勵(lì)性績效獎(jiǎng)金的方案:第一種方案 是每年年末(12月底)追加績效獎(jiǎng)金一次,第一年末追加的績效獎(jiǎng)金為萬元,以后每次所追加的績效獎(jiǎng)金比上次所追加的績效獎(jiǎng)金多萬元;第二種方案是每半年(6月底和12月底)各追加績效獎(jiǎng)金一次,第一年的6月底追加的績效獎(jiǎng)金為萬元,以后每次所追加的績效獎(jiǎng)金比上次所追加的績效獎(jiǎng)金多萬元.

假設(shè)你準(zhǔn)備在該企業(yè)工作年,根據(jù)上述方案,試問:

(1)如果你在該公司只工作2年,你將選擇哪一種追加績效獎(jiǎng)金的方案?請(qǐng)說明理由.

(2)如果選擇第二種追加績效獎(jiǎng)金的方案比選擇第一種方案的獎(jiǎng)金總額多,你至少在該企業(yè)工作幾年?

(3)如果把第二種方案中的每半年追加萬元改成每半年追加萬元,那么在什么范圍內(nèi)取值時(shí),選擇第二種方案的績效獎(jiǎng)金總額總是比選擇第一種方案多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列的前項(xiàng)和為,公差為.

(1)若,求數(shù)列的通項(xiàng)公式;

(2)是否存在,使成立?若存在,試找出所有滿足條件的的值,并求出數(shù)列的通項(xiàng)公式;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案