如圖所示,有一塊四邊形的空、地,現(xiàn)欲把它綠化,需知道其面積,以便估算費(fèi)用.現(xiàn)測得AB=5m,AD=CD=19m,BC=16m,∠ADC=60°.則這塊四邊形空地的面積是
 
m2
考點:解三角形的實際應(yīng)用
專題:綜合題,解三角形
分析:四邊形空地的面積=S△ACD+S△ABC,即可得出結(jié)論.
解答: 解:連結(jié)AC,S△ACD=
1
2
×192×sin60°=
361
3
4

又AC=19,cosB=
52+162-192
2×5×16
=-
1
2
,∠B=120°,
∴S△ABC=
1
2
×5×16×
3
2
=20
3

∴空地面積為
361
3
4
+20
3
=
441
4
3

故答案為:
441
4
3
點評:本題考查解三角形的實際應(yīng)用,考查學(xué)生的計算能力,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x),如果存在區(qū)間M=[a,b](a<b),使得{y|y=f(x),x∈M}=M,則稱區(qū)間M為函數(shù)f(x)的一個“穩(wěn)定區(qū)間”.給出下列四個函數(shù):
①f(x)=x3    ②f(x)=ex    ③f(x)=lnx+1    ④f(x)=(x-1)2
其中存在“穩(wěn)定區(qū)間”的函數(shù)有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①cos(-1)<0;
②函數(shù)y=sin(2x+
4
)的圖象關(guān)于點(-
π
8
,0)對稱;
③將函數(shù)y=cos(2x-
π
3
)的圖象向左平移
π
3
個單位,可得到函數(shù)y=cos2x的圖象;
④函數(shù)y=sinx(x∈R)的圖象與函數(shù)y=x(x∈R)的圖象僅有一個公共點.
其中正確的命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x+
4
x-1
的值域
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m、l是直線,a、β是平面,給出下列命題:
(1)若l垂直于α內(nèi)兩條相交直線,則l⊥α;
(2)若l平行于α,則l平行于α內(nèi)的所有直線;
(3)若m?α,l?β,且l⊥m,則α⊥β;
(4)若l?β,且l⊥α,則α⊥β;
(5)若m?α,l?β,且α∥β,則l∥m.
其中正確的命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)y=f(x)滿足f(x+2)=f(x),當(dāng)x∈(-1,1]時,f(x)=x,則函數(shù)y=f(x)的圖象與函數(shù)y=log3|x|的圖象的交點的個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的半徑為2,圓心在x軸的正半軸上,直線3x+4y+4=0與圓C相切,則圓C的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于兩個變量的線性相關(guān),下列說法:①線性回歸就是由樣本點去尋找一條直線,貼近這些樣本點的數(shù)學(xué)方法;②線性回歸直線方程最能代表觀測值x,y之間的關(guān)系; ③最小二乘法是指把各個離差加起來作總離差,使之達(dá)到最小值的方法;④回歸直線方程
y
=a+bx的系數(shù)b,a可用公式
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
a
=
.
y
-
b
.
x
計算,其中所有正確的說法是(  )
A、①②③B、①③④
C、①②④D、②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m,n是直線,α是平面,且n?α,則m⊥n是m⊥α的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案