【題目】已知線段的端點(diǎn),端點(diǎn)在圓上運(yùn)動(dòng)
(Ⅰ)求線段的中點(diǎn)的軌跡方程.
(Ⅱ) 設(shè)動(dòng)直線與圓交于兩點(diǎn),問在軸正半軸上是否存在定點(diǎn),使得直線與直線關(guān)于軸對(duì)稱?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】(1);(2)當(dāng)點(diǎn)為時(shí),直線與直線關(guān)于x軸對(duì)稱.
【解析】試題分析:
(Ⅰ) 設(shè)點(diǎn)C的坐標(biāo)為,利用相關(guān)點(diǎn)法結(jié)合中點(diǎn)坐標(biāo)公式可得,整理化簡(jiǎn)可得C的軌跡方程為;
(Ⅱ) 設(shè),聯(lián)立直線與圓的方程可得,滿足直線與直線關(guān)于軸對(duì)稱時(shí),據(jù)此可得,結(jié)合韋達(dá)定理得到關(guān)于實(shí)數(shù)t的方程,解方程有,即當(dāng)點(diǎn)為時(shí),直線與直線關(guān)于x軸對(duì)稱.
試題解析:
(Ⅰ)設(shè)點(diǎn)C的坐標(biāo)為,利用中點(diǎn)坐標(biāo)公式可得,點(diǎn)A在圓上,則: ,化簡(jiǎn)可得其軌跡方程為;
(Ⅱ) 設(shè),
由得, ,
所以
若直線與直線關(guān)于軸對(duì)稱,則,
即
所以當(dāng)點(diǎn)為時(shí),直線與直線關(guān)于軸對(duì)稱.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在經(jīng)濟(jì)學(xué)中,函數(shù)f(x)的邊際函數(shù)為Mf(x),定義為Mf(x)=f(x+1)﹣f(x).已知某服裝公司每天最多
生產(chǎn)100件.生產(chǎn)x件的收入函數(shù)為R(x)=300x﹣2x2(單位元),其成本函數(shù)為C(x)=50x+300(單位:元),利潤(rùn)等于收入與成本之差.
(1)求出利潤(rùn)函數(shù)p(x)及其邊際利潤(rùn)函數(shù)Mp(x);
(2)分別求利潤(rùn)函數(shù)p(x)及其邊際利潤(rùn)函數(shù)Mp(x)的最大值;
(3)你認(rèn)為本題中邊際利潤(rùn)函數(shù)Mp(x)最大值的實(shí)際意義是什么?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的定義域;
(2)判斷函數(shù)的奇偶性,并證明你的結(jié)論;
(3)在函數(shù)圖像上是否存在兩個(gè)不同的點(diǎn),使直線垂直軸,若存在,求出兩點(diǎn)坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖 1,在直角梯形中, ,且.現(xiàn)以為一邊向外作正方形,然后沿邊將正方形翻折,使平面與平面垂直, 為的中點(diǎn),如圖 2.
(1)求證: 平面;
(2)求證: 平面;
(3)求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的方程為: 。
(1)求圓的圓心所在直線方程一般式;
(2)若直線被圓截得弦長(zhǎng)為,試求實(shí)數(shù)的值;
(3)已知定點(diǎn),且點(diǎn)是圓上兩動(dòng)點(diǎn),當(dāng)可取得最大值為時(shí),求滿足條件的實(shí)數(shù)的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知右焦點(diǎn)為F(c,0)的橢圓M: =1(a>b>0)過點(diǎn) ,且橢圓M關(guān)于直線x=c對(duì)稱的圖形過坐標(biāo)原點(diǎn).
(1)求橢圓M的方程;
(2)過點(diǎn)(4,0)且不垂直于y軸的直線與橢圓M交于P,Q兩點(diǎn),點(diǎn)Q關(guān)于x軸的對(duì)稱原點(diǎn)為E,證明:直線PE與x軸的交點(diǎn)為F.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 是圓柱的母線, 是的直徑, 是底面圓周上異于的任意一點(diǎn), , .
(1)求證:
(2)當(dāng)三棱錐的體積最大時(shí),求與平面所成角的大;
(3)上是否存在一點(diǎn),使二面角的平面角為45°?若存在,求出此時(shí)的長(zhǎng);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com