如圖,點(diǎn)是橢圓的一個(gè)頂點(diǎn),的長(zhǎng)軸是圓的直徑,、是過(guò)點(diǎn)且互相垂直的兩條直線,其中交圓于、兩點(diǎn),交橢圓于另一點(diǎn).
(1)求橢圓的方程;
(2)求面積的最大值及取得最大值時(shí)直線的方程.
(1);當(dāng)直線的方程為時(shí),的面積取最大值.
解析試題分析:(1)首先根據(jù)題中條件求出和的值,進(jìn)而求出橢圓的方程;(2)先設(shè)直線的方程為,先利用弦心距、半徑長(zhǎng)以及弦長(zhǎng)之間滿(mǎn)足的關(guān)系(勾股定理)求出直線截圓所得的弦長(zhǎng)
,然后根據(jù)直線與兩者所滿(mǎn)足的垂直關(guān)系設(shè)直線,將直線的方程與橢圓的方程聯(lián)立,求出直線截橢圓的弦長(zhǎng),然后求出的面積的表達(dá)式,并利用基本不等式求出的面積的最大值,并求出此時(shí)直線的方程.
試題解析:(1)由題意得,橢圓的方程為;
(2)設(shè)、、,
由題意知直線的斜率存在,不妨設(shè)其為,則直線的方程為,
故點(diǎn)到直線的距離為,又圓,,
又,直線的方程為,
由,消去,整理得,
故,代入的方程得
,
設(shè)的面積為,則,
,
當(dāng)且僅當(dāng),即時(shí)上式取等號(hào),
當(dāng)時(shí),的面積取得最大值,
此時(shí)直線的方程為
考點(diǎn):1.橢圓的方程;2.直線與圓、橢圓的位置關(guān)系;3.基本不等式
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
給定橢圓.稱(chēng)圓心在原點(diǎn)O,半徑為的圓是橢圓C的“準(zhǔn)圓”.若橢圓C的一個(gè)焦點(diǎn)為,其短軸上的一個(gè)端點(diǎn)到F的距離為.
(1)求橢圓C的方程和其“準(zhǔn)圓”方程;
(2)點(diǎn)P是橢圓C的“準(zhǔn)圓”上的一個(gè)動(dòng)點(diǎn),過(guò)動(dòng)點(diǎn)P作直線,使得與橢圓C都只有一個(gè)交點(diǎn),試判斷是否垂直?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知雙曲線的中心在原點(diǎn),離心率為2,一個(gè)焦點(diǎn)為F(-2,0).
(1)求雙曲線方程;
(2)設(shè)Q是雙曲線上一點(diǎn),且過(guò)點(diǎn)F,Q的直線l與y軸交于點(diǎn)M,若= 2,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線的準(zhǔn)線與x軸交于點(diǎn)M,過(guò)點(diǎn)M作圓的兩條切線,切點(diǎn)為A、B,.
(1)求拋物線E的方程;
(2)過(guò)拋物線E上的點(diǎn)N作圓C的兩條切線,切點(diǎn)分別為P、Q,若P,Q,O(O為原點(diǎn))三點(diǎn)共線,求點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓過(guò)點(diǎn),且離心率為.斜率為的直線與橢圓交于A、B兩點(diǎn),以為底邊作等腰三角形,頂點(diǎn)為.
(1)求橢圓的方程;
(2)求△的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知定點(diǎn)與分別在軸、軸上的動(dòng)點(diǎn)滿(mǎn)足:,動(dòng)點(diǎn)滿(mǎn)足.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)設(shè)過(guò)點(diǎn)任作一直線與點(diǎn)的軌跡交于兩點(diǎn),直線與直線分別交于點(diǎn)(為坐標(biāo)原點(diǎn));
(i)試判斷直線與以為直徑的圓的位置關(guān)系;
(ii)探究是否為定值?并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的左右焦點(diǎn)分別為、,短軸兩個(gè)端點(diǎn)為、,且四邊形是邊長(zhǎng)為2的正方形.
(1)求橢圓方程;
(2)若分別是橢圓長(zhǎng)軸的左右端點(diǎn),動(dòng)點(diǎn)滿(mǎn)足,連接,交橢圓于點(diǎn),證明:為定值;
(3)在(2)的條件下,試問(wèn)軸上是否存在異于點(diǎn)的定點(diǎn),使得以為直徑的圓恒過(guò)直線的交點(diǎn)?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知橢圓E:的離心率為,過(guò)左焦點(diǎn)且斜率為的直線交橢圓E于A,B兩點(diǎn),線段AB的中點(diǎn)為M,直線:交橢圓E于C,D兩點(diǎn).
(1)求橢圓E的方程;
(2)求證:點(diǎn)M在直線上;
(3)是否存在實(shí)數(shù)k,使得三角形BDM的面積是三角形ACM的3倍?若存在,求出k的值;
若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的焦點(diǎn)在軸上,離心率為,對(duì)稱(chēng)軸為坐標(biāo)軸,且經(jīng)過(guò)點(diǎn).
(1)求橢圓的方程;
(2)直線與橢圓相交于、兩點(diǎn), 為原點(diǎn),在、上分別存在異于點(diǎn)的點(diǎn)、,使得在以為直徑的圓外,求直線斜率的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com