先化簡:(a-
-2a-1
a
)÷
1-a2
a2-a
,再給a選擇一個(gè)合適的數(shù)代入求值.
考點(diǎn):根式與分?jǐn)?shù)指數(shù)冪的互化及其化簡運(yùn)算
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:把除法轉(zhuǎn)化為乘法運(yùn)算,再通過因式分解、約分即可得出.
解答: 解:原式=
a2+2a+1
a
×
a(a-1)
(1-a)(1+a)
=-a-1.
當(dāng)a=2時(shí),原式=-3.
點(diǎn)評(píng):本題考查了多項(xiàng)式的乘法除法運(yùn)算,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為
x=t
y=t+4
(t為參數(shù)).曲線C的參數(shù)方程為
x=2+2
2
cosθ
y=2+2
2
sinθ
(θ為參數(shù)),則直線l和曲線C的公共點(diǎn)有( 。
A、0個(gè)B、1個(gè)C、2個(gè)D、無數(shù)個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x
1+|x|
(x∈R)時(shí),則下列結(jié)論不正確的是( 。
A、任意x∈R,等式f(-x)+f(x)=0恒成立
B、存在m∈(0,1),使得方程|f(x)|=m有兩個(gè)不等實(shí)數(shù)根
C、對(duì)任意x1,x2∈R,若x1≠x2,則一定有f(x1)≠f(x2
D、存在k∈(1,+∞),使得函數(shù)g(x)=f(x)-kx在R上有三個(gè)零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a∈R,函數(shù)f(x)=ax3-2x2-4ax,若x=2是函數(shù)y=f(x)的極值點(diǎn)
(1)求a的值;
(2)若關(guān)于x的方程f(x)=a有三個(gè)不同實(shí)根,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sinx,1),
b
=(cosx,1),x∈R.
(1)當(dāng)x=
π
4
時(shí),求向量a+b的坐標(biāo);
(2)若函數(shù)f(x)=|
a
+
b
|2+m為奇函數(shù),求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若n=
1
5
[
C
7
10
-
A
2
5
]
,m是(
5
2x
+
2
5
3x2
)5
的展開式中的常數(shù)項(xiàng).
(1)將n個(gè)不同的物品任意分成m-2組,共有多少種不同的分組分法?
(2)求Cn-18m-2+Cn-17m-2+Cn-16m-2+…+Cnm-2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,等腰梯形ABCD中,AB∥CD,AD=CB,對(duì)角線AC與BD交于O,∠ACD=60°,點(diǎn)S、P、Q分別是OD、OA、BC的中點(diǎn).
(1)求證:△PQS是等邊三角形;
(2)若AB=8,CD=6,求△PQS的面積;
(3)若△PQS與△AOD的面積比為4:5,求CD:AB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A+B=
π
4
,求證:(1+tanA)(1+tanB)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明:若g(x)=x2+ax+b,則g(
x1+x2
2
)≤
g(x1)+g(x2)
2

查看答案和解析>>

同步練習(xí)冊(cè)答案