(本小題滿分12分)
已知函數(shù)定義域為,若對于任意的,都有,且時,有.
(1)求證: 為奇函數(shù);
(2)求證: 在上為單調(diào)遞增函數(shù);
(3)設(shè),若<,對所有恒成立,求實數(shù)的取值范圍.
(1)見解析(2)見解析(3)
解析試題分析:(1)因為有,
令,得,所以, ……1分
令可得:
所以,所以為奇函數(shù). ……4分
(2)是定義在上的奇函數(shù),由題意
則,
是在上為單調(diào)遞增函數(shù); ……8分
(3)因為在上為單調(diào)遞增函數(shù),
所以在上的最大值為, ……9分
所以要使<,對所有恒成立,
只要>1,即>0, ……10分
令
. ……12分
考點:本小題主要考查有關(guān)抽象函數(shù)的奇偶性、單調(diào)性和恒成立問題,考查學生分析問題、解決問題和靈活轉(zhuǎn)化的能力.
點評:解決抽象函數(shù)問題常用的方法是“賦值法”,而要考查抽象函數(shù)的性質(zhì),還要借助圖象,數(shù)形結(jié)合來解決.對于恒成立問題,要轉(zhuǎn)為為求最值來解決,而(3)中將函數(shù)轉(zhuǎn)化為關(guān)于的函數(shù),是這道題解題的亮點所在.
科目:高中數(shù)學 來源: 題型:解答題
(本題14分)
已知是一個奇函數(shù).
(1)求的值和的值域;
(2)設(shè)>,若在區(qū)間是增函數(shù),求的取值范圍
(3) 設(shè),若對取一切實數(shù),不等式都成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分15分)已知在定義域上是奇函數(shù),且在上是減函數(shù),圖像如圖所示.
(1)化簡:;
(2)畫出函數(shù)在上的圖像;
(3)證明:在上是減函數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題12分)已知().
(1)判斷函數(shù)的奇偶性,并證明;
(2)若,用單調(diào)性定義證明函數(shù)在區(qū)間上單調(diào)遞減;
(3)是否存在實數(shù),使得的定義域為時,值域為
,若存在,求出實數(shù)的取值范圍;若不存在,則說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分13分)已知函數(shù)為奇函數(shù);
(1)求以及m的值;
(2)在給出的直角坐標系中畫出的圖象;
(3)若函數(shù)有三個零點,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)經(jīng)市場調(diào)查,某種商品在過去50天的銷售量和價格均為銷售時間t(天)的函數(shù),已知前30天價格為,后20天價格為f(t)="45" (31£ t £50, tÎN),且銷售量近似地滿足g(t)=" -2t+200" (1£t£50, tÎN).
(I)寫出該種商品的日銷售額S與時間t的函數(shù)關(guān)系式;
(II)求日銷售額S的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)已知的圖像在點處的切線與直線平行.
⑴ 求,滿足的關(guān)系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(I)求證:不論為何實數(shù)總是為增函數(shù);
(II)確定的值, 使為奇函數(shù);
(Ⅲ)當為奇函數(shù)時, 求的值域.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com