已知四邊形ABCD為圓內(nèi)接四邊形,AB是直徑,MN切⊙O于C點(diǎn),∠BCM=38°,那么∠ABC的度數(shù)是
52°
52°
分析:利用MN切⊙O于C點(diǎn),可得弦切角等于同弧所對的圓周角,再利用AB是直徑,即可求得∠ABC的度數(shù)
解答:解:連接AC,則∵M(jìn)N切⊙O于C點(diǎn)
∴∠BCM=∠BAC=38°
∵AB是直徑,
∴∠ABC=90°-∠BAC=90°-38°=52°
故答案為:52°
點(diǎn)評:本題考查弦切角定理,考查直徑所對的圓周角為直角,解題的關(guān)鍵是利用定理正確求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知四邊形ABCD為矩形,AD⊥平面ABE,AE=EB=BC=2,F(xiàn)為CE上的點(diǎn),且BF⊥平面ACE.
(1)求證:AE∥平面BDF;
(2)求三棱錐D-ACE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知四邊形ABCD為菱形,AB=6,∠BAD=60°,兩個(gè)正三棱錐P-ABD、S-BCD(底面是正三角形且頂點(diǎn)在底面上的射影是底面正三角形的中心)的側(cè)棱長都相等,如圖,E、M、N分別在AD、
AB、AP上,且AM=AE=2,AN=
13
AP,MN⊥PE

(Ⅰ)求證:PB⊥平面PAD;
(Ⅱ)求平面BPS與底面ABCD所成銳二面角的平面角的正切
值;
(Ⅲ)求多面體SPABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•鹽城一模)已知四邊形ABCD為梯形,AB∥CD,l為空間一直線,則“l(fā)垂直于兩腰AD,BC”是“l(fā)垂直于兩底AB,DC”的
充分不必要
充分不必要
條件(填寫“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”中的一個(gè)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知四邊形ABCD為直角梯形,∠ABC=90°,AD∥BC,AD=2,AB=BC=1,沿AC將△ABC折起,使點(diǎn)B到點(diǎn)P的位置,且平面PAC⊥平面ACD.
(I)證明:DC⊥平面APC;
(II)求二面角B-AP-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四邊形ABCD為直角梯形,∠ADC=90°,AD∥BC,△ABD為等腰直角三角形,平面PAD⊥平面ABCD,E為PA的中點(diǎn),AD=2BC=2
2
,PA=3PD=3.
(1)求證:BE∥平面PDC;
(2)求證:AB⊥平面PBD.

查看答案和解析>>

同步練習(xí)冊答案