考點(diǎn):等差關(guān)系的確定,等比關(guān)系的確定
專題:綜合題,等差數(shù)列與等比數(shù)列
分析:①只有an+1=an≠0時(shí),{an}既是等差數(shù)列又是等比數(shù)列;
②由Sn=an2+bn(a,b∈R),不能判斷{an}是等差數(shù)列;
③由Sn=1-(-1)n,利用前n項(xiàng)和與等比數(shù)列的定義,推出{an}是等比數(shù)列;
④{an}是等差數(shù)列時(shí),根據(jù)前n項(xiàng)和與等差數(shù)列的定義,得出Sn,S2n-Sn,S3n-S2n成等差數(shù).
解答:
解:對于①,當(dāng)a
n+1=a
n≠0時(shí),{a
n}既是等差數(shù)列又是等比數(shù)列,否則不成立,∴①錯(cuò)誤;
對于②,如a
n=n
2,b
n=1時(shí),S
n=a
n2+b
n=n
4+1,{a
n}不是等差數(shù)列,∴②錯(cuò)誤;
對于③,當(dāng)S
n=1-(-1)
n時(shí),S
n+1=1-(-1)
n+1,
∴a
n+1=S
n+1-S
n=2•(-1)
n,
a
n=2•(-1)
n-1,
∴
=-1為常數(shù),
∴{a
n}是等比數(shù)列,③正確;
對于④,當(dāng){a
n}是等差數(shù)列時(shí),S
n=na
1+
n(n-1)d,
S
2n-S
n=na
n+1+
n(n-1)d,
S
3n-S
2n=na
2n+1+
n(n-1)d,
∴(S
3n-S
2n)-(S
2n-S
n)=n(a
2n+1-a
n+1)=n
2d,
(S
2n-S
n)-S
n=n(a
n+1-a
1)=n
2d,
∴(S
3n-S
2n)-(S
2n-S
n)=(S
2n-S
n)-S
n,
即S
n,S
2n-S
n,S
3n-S
2n成等差數(shù),∴④正確;
綜上,正確的命題是③④.
故答案為:③④.
點(diǎn)評:本題考查了等差與等比數(shù)列的定義與性質(zhì)的應(yīng)用問題,是綜合性題目.