【題目】設(shè)是圓上的任意一點(diǎn),是過點(diǎn)且與軸垂直的直線,是直線與軸的交點(diǎn),點(diǎn)在直線上,且滿足當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),記點(diǎn)的軌跡為曲線.
求曲線的方程;
已知直線與曲線交于兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,設(shè),證明:直線過定點(diǎn),并求面積的最大值.
【答案】(1);(2)見解析
【解析】
(1)點(diǎn)在圓上運(yùn)動(dòng),引起點(diǎn)的運(yùn)動(dòng),我們可以由,得到點(diǎn)和點(diǎn)坐標(biāo)之間的關(guān)系式,并由點(diǎn)的坐標(biāo)滿足圓的方程得到點(diǎn)坐標(biāo)所滿足的方程;
(2)設(shè),,則,聯(lián)立,得韋達(dá)定理,利用直線的斜率,求直線的方程,即可直線過定點(diǎn),并求出面積的最大值.
解:設(shè),,,在直線上,
,
點(diǎn)在圓上運(yùn)動(dòng),
將式代入式即得曲線的方程為.
證明:設(shè),,則,
聯(lián)立,得,
,.
直線的斜率,
直線的方程為
令,得,
直線過定點(diǎn)
面積,
當(dāng)且僅當(dāng),即時(shí)取等號(hào),
面積的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某快遞公司收取快遞費(fèi)用的標(biāo)準(zhǔn)是:重量不超過的包裹收費(fèi)10元;重量超過的包裹,除收費(fèi)10元之外,超過的部分,每超出(不足,按計(jì)算)需再收5元.
該公司對(duì)近60天,每天攬件數(shù)量統(tǒng)計(jì)如下表:
(1)某人打算將三件禮物隨機(jī)分成兩個(gè)包裹寄出,求該人支付的快遞費(fèi)不超過30元的概率;
(2)該公司從收取的每件快遞的費(fèi)用中抽取5元作為前臺(tái)工作人員的工資和公司利潤(rùn),剩余的作為其他費(fèi)用.前臺(tái)工作人員每人每天攬件不超過150件,工資100元,目前前臺(tái)有工作人員3人,那么,公司將前臺(tái)工作人員裁員1人對(duì)提高公司利潤(rùn)是否更有利?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)F在x軸上,拋物線C上一點(diǎn)到焦點(diǎn)F的距離為.
Ⅰ求拋物線C的標(biāo)準(zhǔn)方程;
Ⅱ設(shè)點(diǎn),過點(diǎn)的直線l與拋物線C相交于A,B兩點(diǎn),記直線MA與直線MB的斜率分別為,,證明:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了解高二年級(jí)學(xué)生某次數(shù)學(xué)考試成績(jī)的分布情況,從該年級(jí)的1120名學(xué)生中隨機(jī)抽取了100名學(xué)生的數(shù)學(xué)成績(jī),發(fā)現(xiàn)都在內(nèi)現(xiàn)將這100名學(xué)生的成績(jī)按照,,,,,,分組后,得到的頻率分布直方圖如圖所示,則下列說法正確的是
A. 頻率分布直方圖中a的值為
B. 樣本數(shù)據(jù)低于130分的頻率為
C. 總體的中位數(shù)保留1位小數(shù)估計(jì)為分
D. 總體分布在的頻數(shù)一定與總體分布在的頻數(shù)相等
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC-A1B1C1中,D,E分別為AB,BC的中點(diǎn),點(diǎn)F在側(cè)棱B1B上,且, .
求證:(1)直線DE平面A1C1F;
(2)平面B1DE⊥平面A1C1F.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四個(gè)正方體中,是正方體的一條體對(duì)角線,點(diǎn)分別為其所在棱的中點(diǎn),能得出平面的圖形為( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列是首項(xiàng)為1的等差數(shù)列,數(shù)列滿足,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)令,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐, 平面,底面中, , ,且, 為的中點(diǎn).
(1)求證:平面平面;
(2)問在棱上是否存在點(diǎn),使平面,若存在,請(qǐng)求出二面角的余弦值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
(Ⅱ)若在區(qū)間上恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com