【題目】如圖所示,拋物線的焦點(diǎn)為.

(1)求拋物線的標(biāo)準(zhǔn)方程;

(2)過的兩條直線分別與拋物線交于點(diǎn),(點(diǎn),軸的上方).

①若,求直線的斜率;

②設(shè)直線的斜率為,直線的斜率為,若,求證:直線過定點(diǎn).

【答案】(1);(2);(3)

【解析】

(1)根據(jù)焦點(diǎn)可確定p,即可寫出方程(2)①設(shè),,利用向量關(guān)系得,代入拋物線方程,可得,,結(jié)合F(1,0)即可求出斜率. ②根據(jù)可得 ,當(dāng)存在時,設(shè)直線,聯(lián)立拋物線方程,得,根據(jù)可得,代入直線方程即可求出定點(diǎn),當(dāng)當(dāng)不存在時,檢驗(yàn)過定點(diǎn)即可.

(1)因?yàn)?/span>,所以p=2,

所以方程為

(2)法一:,,

代入,則,,

法二:由

,代入①求

,得

法三:利用拋物線的定義轉(zhuǎn)化為到準(zhǔn)線的距離,得

(3),得

,同理

代入①得

,又有

當(dāng)存在時,設(shè)直線

得:

過定點(diǎn)

當(dāng)不存在時,檢驗(yàn)得過定點(diǎn)。

綜上所述,直線過定點(diǎn)。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(x﹣2)ex+a(x﹣1)2
(1)討論f(x)的單調(diào)性;
(2)若f(x)有兩個零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABC—A1B1C1中,AC=1,AB=,BC=,AA1=.

(1)求證:A1B⊥B1C;

(2)求二面角A1—B1C—B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知直線y=﹣2x+1與圓O:x2+y2=r2(r>0)交于M,N兩點(diǎn),且MN=

(1)求M,N的坐標(biāo);

(2)求過O,M,N三點(diǎn)的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在公園游園活動中,有這樣一個游戲項(xiàng)目:甲箱子里裝有3個白球和2個黑球,乙箱子里裝有1個白球和2個黑球,這些球除顏色外完全相同.每次游戲都從這兩個箱子里各隨機(jī)地摸出2個球,若摸出的白球不少于2個,則獲獎.(每次游戲結(jié)束后將球放回原箱)

(1)求在每一次游戲中獲獎的概率;

(2)在三次游戲中,記獲獎次數(shù)為,求的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面四個結(jié)論: ①數(shù)列可以看作是一個定義在正整數(shù)集(或它的有限子集{1,2,3……,n})上的函數(shù);
②數(shù)列若用圖象表示,從圖象上看都是一群孤立的點(diǎn);
③數(shù)列的項(xiàng)數(shù)是無限的;
④數(shù)列通項(xiàng)的表示式是唯一的.
其中正確的是( )
A.①②
B.①②③
C.②③
D.①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若0<a<b,且a+b=1,則下列各式中最大的是(
A.﹣1
B.log2a+log2b+1
C.log2b
D.log2(a3+a2b+ab2+b3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某加工廠用某原料由車間加工出A產(chǎn)品,由乙車間加工出B產(chǎn)品.甲車間加工一箱原料需耗費(fèi)工時10小時可加工出7千克A產(chǎn)品,每千克A產(chǎn)品獲利40元.乙車間加工一箱原料需耗費(fèi)工時6小時可加工出4千克B產(chǎn)品,每千克B產(chǎn)品獲利50元.甲、乙兩車間每天功能完成至多70多箱原料的加工,每天甲、乙車間耗費(fèi)工時總和不得超過480小時,甲、乙兩車間每天獲利最大的生產(chǎn)計(jì)劃為(
A.甲車間加工原料10箱,乙車間加工原料60箱
B.甲車間加工原料15箱,乙車間加工原料55箱
C.甲車間加工原料18箱,乙車間加工原料50箱
D.甲車間加工原料40箱,乙車間加工原料30箱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=1+x﹣ +…+ ,g(x)=1﹣x+ ﹣…﹣ ,設(shè)函數(shù)F(x)=f(x+4)g(x﹣5),且函數(shù)F(x)的零點(diǎn)均在區(qū)間[a,b](a<b,a,b∈Z)內(nèi),則b﹣a的最小值為(
A.9
B.10
C.11
D.12

查看答案和解析>>

同步練習(xí)冊答案