直線與兩坐標(biāo)軸所圍成的三角形的面積不大于1,那么的取值范圍是

A.        B. 

C.     D.

 

【答案】

C

【解析】

試題分析:直線x-2y+b=0與兩坐標(biāo)軸的交點(diǎn)是A(-b,0),B(0,),

∴與兩坐標(biāo)軸所圍成的三角形的面積為||=1,∴b=±2,

結(jié)合圖形可得b∈[-2,0)∪(0,2].故選C。

考點(diǎn):本題主要考查直線方程的一般式、直線的截距。

點(diǎn)評(píng):基本題,應(yīng)熟練地由直線方程的一般式化為其它形式,數(shù)形結(jié)合有助于正確確定選項(xiàng)。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P1(a1,b1),P2(a2,b2),…,Pn(an,bn)(n∈N*)都在函數(shù)y=log
12
x
的圖象上.
(Ⅰ)若數(shù)列{bn}是等差數(shù)列,求證數(shù)列{an}為等比數(shù)列;
(Ⅱ)若數(shù)列{an}的前n項(xiàng)和為Sn=1-2-n,過(guò)點(diǎn)Pn,Pn+1的直線與兩坐標(biāo)軸所圍成三角形面積為cn,求使cn≤t對(duì)n∈N*恒成立的實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P1(a1,b1),P2(a2,b2),…,Pn(an,bn)(n為正整數(shù))都在函數(shù)y=(
1
2
)x
的圖象上.
(1)若數(shù)列{an}是首項(xiàng)為1,公差也為1的等差數(shù)列,求{bn}的通項(xiàng)公式;
(2)對(duì)(1)中的數(shù)列{an}和{bn},過(guò)點(diǎn)Pn,Pn+1的直線與兩坐標(biāo)軸所圍成的三角形面積為cn,試證明:對(duì)一切正整數(shù)n,cn
9
8

(3)對(duì)(1)中的數(shù)列{an},對(duì)每個(gè)正整數(shù)k,在ak與ak+1之間插入3k-1個(gè)3,得到一個(gè)新的數(shù)列{dn},問(wèn)a5是數(shù)列{dn}中的第幾項(xiàng).若設(shè)Sn是數(shù)列{dn}的前n項(xiàng)和,試求S100的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P1(a1,b1),P2(a2,b2),…,Pn(an,bn)(n為正整數(shù))都在函數(shù)y=(
12
)x
圖象上.
(Ⅰ)若數(shù)列{an}是等差數(shù)列,證明:數(shù)列{bn}是等比數(shù)列;
(Ⅱ)設(shè)an=n(n為正整數(shù)),過(guò)點(diǎn)Pn,Pn+1的直線與兩坐標(biāo)軸所圍成的三角形面積為cn,試求最小的實(shí)數(shù)t,使cn≤t對(duì)一切正整數(shù)n恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P1(a1,b1),P2(a2,b2),…,Pn(an,bn)(n為正整數(shù))都在函數(shù)y=(
12
)x
圖象上.
(Ⅰ)若數(shù)列{an}是等差數(shù)列,證明:數(shù)列{bn}是等比數(shù)列;
(Ⅱ)設(shè)an=n(n為正整數(shù)),過(guò)點(diǎn)Pn,Pn+1的直線與兩坐標(biāo)軸所圍成的三角形面積為cn,試求最小的實(shí)數(shù)t,使cn≤t對(duì)一切正整數(shù)n恒成立;
(Ⅲ)對(duì)(Ⅱ)中的數(shù)列{an},對(duì)每個(gè)正整數(shù)k,在ak與ak+1之間插入3k-1個(gè)3,得到一個(gè)新的數(shù)列{dn},設(shè)Sn是數(shù)列{dn}的前n項(xiàng)和,試探究2008是否數(shù)列{Sn}中的某一項(xiàng),寫(xiě)出你探究得到的結(jié)論并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年雅禮中學(xué)二模文)已知點(diǎn),,…,為正整數(shù))都在函數(shù)的圖像上.

(Ⅰ)若數(shù)列是首項(xiàng)為,公差也為的等差數(shù)列,求的通項(xiàng)公式;

(Ⅱ)對(duì)(Ⅰ)中的數(shù)列,過(guò)點(diǎn)的直線與兩坐標(biāo)軸所圍成的三角形面積為,求的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案