已知集合A={x|3≤3x≤27},B={x|x>2}.
(Ⅰ)分別求A∩B,(∁RB)∪A;
(Ⅱ)已知集合C={x|1<x<a},若C⊆A,求實數(shù)a的取值集合.
考點:集合關(guān)系中的參數(shù)取值問題,交、并、補(bǔ)集的混合運算
專題:
分析:(1)解指數(shù)不等式我們可以求出集合A,再由集合補(bǔ)集的運算規(guī)則,求出CRB,進(jìn)而由集合交集和并集的運算法則,即可求出A∩B,(CRB)∪A;
(2)由(1)中集合A,結(jié)合集合C={x|1<x<a},我們分C=∅和C≠∅兩種情況,分別求出對應(yīng)的實數(shù)a的取值,最后綜合討論結(jié)果,即可得到答案.
解答: 解:(1)∵A={x|3≤3x≤27}={x|1≤x≤3},B={x|x>2}…(1分)
∴A∩B={x|2<x≤3}…(1分)
(CRB)∪A={x|x≤2}∪{x|1≤x≤3}={x|x≤3}…(2分)
(2)當(dāng)a≤1時,C=∅,此時C⊆A…(1分)
當(dāng)a>1時,C⊆A,則1<a≤3…(1分)
綜上所述,a的取值范圍是(-∞,3]…(1分)
點評:本題考查的知識點是集合交、并、補(bǔ)集的混合運算,集合關(guān)系中的參數(shù)取值問題,指數(shù)不等式的解法,對數(shù)不等式的解法,其中解指數(shù)不等式和對數(shù)不等式求出集合A,B是解答本題的關(guān)鍵,在(2)的解答中易忽略C為空集也滿足條件而錯解為(1,3],也容易忽略最后要的結(jié)果為集合,不能用不等式的形式表達(dá).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)
.
z
滿足(1-i)
.
z
=1+i,其中i為虛數(shù)單位,則
.
z
=( 。
A、-1B、1C、-iD、i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(sinx,
3
2
),
b
=(cosx,-1).
(1)若
a
b
,求tan(2x-
π
4
)的值;
(2)設(shè)x∈[0,
π
2
],求f(x)=(
a
+
b
)•
b
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)計一個求S=12+22+…+992+1002的值程序框圖并用For語句寫出程序.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x2-
54
x
(x≠0)
(1)求x=3處的切線方程;
(2)求f(x) 的單調(diào)區(qū)間及極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
lnx
x2

(1)求f(x)的極大值;
(2)求證:12eln[n•(n-1)•(n-2)…2•1]≤(n2+n)(2n+1)(n∈N*);
(3)當(dāng)方程f(x)-
a
2e
=0(a∈R+)有唯一解時,方程g(x)=txf′(x)+
ax2-2tx-t
x2
=0也有唯一解,求正實數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x丨-2<x<1或x>1},集合B={x丨x2+ax+b≤0},已知A∪B={x丨x>-2},A∩B={x丨1<x≤3},試求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從4名男生和2名女生中任選2人參加演講比賽,
(1)求所選2人都是男生的概率;
(2)求所選2人恰有1名女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+x-lnx
(1)當(dāng)a>0,求f(x)的單調(diào)區(qū)間;
(2)若f(x)≥1在x>0時恒成立,求a的取值范圍;
(3)設(shè)a=1,b>1,求證:在區(qū)間(1,b)上有唯一的實數(shù)x0,使得f′(x0)=
f(b)-f(1)
b-1

查看答案和解析>>

同步練習(xí)冊答案