【題目】已知函數(shù),其中.

1)設討論的單調(diào)性;

2)若函數(shù)內(nèi)存在零點,求的范圍.

【答案】(1)見解析;(2)的取值范圍是.

【解析】試題分析:(1)求出,對分三種情況討論,分別令求得的范圍,可得函數(shù)增區(qū)間, 求得的范圍,可得函數(shù)的減區(qū)間;(2)設 , ,設,分三種情況討論: , , ,分別利用導數(shù)研究函數(shù)的單調(diào)性,結(jié)合函數(shù)圖象以及零點定理,可得的范圍.

.

試題解析:(1)定義域

,則 上單調(diào)遞減;

,則 .

(i) 當 時,則 ,因此在 上恒有 ,即 上單調(diào)遞減;

(ii)當時, ,因而在上有,在上有 ;因此 上單調(diào)遞減,在單調(diào)遞增.

(2)設 ,

,設

.

先證明一個命題:當時, .令,故上是減函數(shù),從而當時, ,故命題成立.

(i)若 ,由 可知, .,故 ,對任意都成立,故 上無零點,因此.

(ii)當,考察函數(shù) ,由于 上必存在零點.設的第一個零點為,則當時, ,故 上為減函數(shù),又

所以當 時, ,從而 上單調(diào)遞減,故在 上恒有 。即 ,注意到 ,因此,令時,則有,由零點存在定理可知函數(shù) 上有零點,符合題意.

(iii)若,則由 可知, 恒成立,從而 上單調(diào)遞增,也即 上單調(diào)遞增,因此,即上單調(diào)遞增,從而恒成立,故方程 上無解.

綜上可知, 的取值范圍是 .

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),其中為自然對數(shù)的底數(shù).

(1)若曲線軸上的截距為,且在點處的切線垂直于直線,求實數(shù)的值;

(2)記的導函數(shù)為, 在區(qū)間上的最小值為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) ,的值域是____;若的值域是,則實數(shù)的取值范圍是____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列, , , 滿足,且當時, ,令

)寫出的所有可能的值.

)求的最大值.

)是否存在數(shù)列,使得?若存在,求出數(shù)列;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】按下面的流程圖進行計算.若輸出的,則輸入的正實數(shù)值的個數(shù)最多為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)處的切線斜率為2.

(Ⅰ)求的單調(diào)區(qū)間和極值;

(Ⅱ)若上無解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知

(Ⅰ)當處切線的斜率為,求的值;

(Ⅱ)在(Ⅰ)的前提下,求的極值;

(Ⅲ)若個不同零點,求的取值范圍..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某班為了活躍元旦晚會氣氛,主持人請12位同學做一個游戲,第一輪游戲中,主持人將標有數(shù)字1到12的十二張相同的卡片放入一個不透明的盒子中,每人依次從中取出一張卡片,取到標有數(shù)字7到12的卡片的同學留下,其余的淘汰;第二輪將標有數(shù)字1到6的六張相同的卡片放入一個不透明的盒子中,每人依次從中取出一張卡片,取到標有數(shù)字4到6的卡片的同學留下,其余的淘汰;第三輪將標有數(shù)字1,2,3的三張相同的卡片放入一個不透明的盒子中,每人依次從中取出一張卡片,取到標有數(shù)字2,3的卡片的同學留下,其余的淘汰;第四輪用同樣的辦法淘汰一位同學,最后留下的這位同學獲得一個獎品.已知同學甲參加了該游戲.

(1)求甲獲得獎品的概率;

(2)設為甲參加游戲的輪數(shù),求的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)(是常數(shù),且)滿足條件:,且方程有兩個相等實根.

(1)的解析式;

(2)是否存在實數(shù),使的定義域和值域分別為?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案