拋物線y=的焦點(diǎn)坐標(biāo)是______________.
化成標(biāo)準(zhǔn)形式可知,所以焦點(diǎn)坐標(biāo)為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)已知頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在軸正半軸的拋物線上有一點(diǎn),點(diǎn)到拋物線焦點(diǎn)的距離為1.(1)求該拋物線的方程;(2)設(shè)為拋物線上的一個(gè)定點(diǎn),過作拋物線的兩條互相垂直的弦,,求證:恒過定點(diǎn).(3)直線與拋物線交于,兩點(diǎn),在拋物線上是否存在點(diǎn),使得△為以為斜邊的直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分13分)
如圖,已知拋物線,過點(diǎn)作拋物線的弦,

(Ⅰ)若,證明直線過定點(diǎn),并求出定點(diǎn)的坐標(biāo);
(Ⅱ)假設(shè)直線過點(diǎn),請(qǐng)問是否存在以為底邊的等腰三角形? 若存在,求出的個(gè)數(shù)?如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)為坐標(biāo)原點(diǎn),拋物線與過焦點(diǎn)的直線交于兩點(diǎn),則    .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,某旅游區(qū)擬在公路(南北向)旁開發(fā)一個(gè)拋物線形的人工湖,湖沿岸上每一點(diǎn)到公路的距離與到處的距離相等,并在湖中建造一個(gè)三角形的游樂區(qū),三個(gè)頂點(diǎn)都在湖沿岸上,直線通道經(jīng)過處.經(jīng)測(cè)算,在公路正東方向米處,的正西方向米處,現(xiàn)以點(diǎn)為坐標(biāo)原點(diǎn),以線段所在直線為軸建立平面直角坐標(biāo)系,
(1)求拋物線的方程
(2)試確定直線通道的位置,使得三角形游樂區(qū)的面積最小,并求出最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)為拋物線上一點(diǎn),為拋物線的焦點(diǎn),以為圓心, 為半徑的圓和拋物線的準(zhǔn)線相交,則的取值范圍是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)拋物線的準(zhǔn)線為,為拋物線上的點(diǎn),,垂足為,若得面積與的面積之比為,則點(diǎn)坐標(biāo)是                 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

要建造一座跨度為16米,拱高為4米的拋物線拱橋,建橋時(shí)每隔4米用一根支柱支撐,兩邊的柱長(zhǎng)應(yīng)為    

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)曲線與直線相切,則________ 

查看答案和解析>>

同步練習(xí)冊(cè)答案