平面直角坐標(biāo)系中,點(diǎn)(3,t)和(2t,4)分別在頂點(diǎn)為原點(diǎn),始邊為x軸的非負(fù)半軸的角α,α+45°的終邊上,則t的值為( )
A.±6或±1
B.6或1
C.6
D.1
【答案】
分析:根據(jù)任意角的三角函數(shù)定義分別求出tanα和tan(α+45°),然后利用兩角和與差的正切函數(shù)公式及特殊角的三角函數(shù)值得到一個(gè)關(guān)于t的方程,求出t的值,然后利用α和α+45°是始邊為x軸的非負(fù)半軸的角,得到滿(mǎn)足題意t的值即可.
解答:解:由題意得tanα=
,tan(α+45°)=
=
而tan(α+45°)=
=
=
,化簡(jiǎn)得:t
2+5t-6=0即(t-1)(t+6)=0,解得t=1,t=-6
因?yàn)辄c(diǎn)(3,t)和(2t,4)分別在頂點(diǎn)為原點(diǎn),始邊為x軸的非負(fù)半軸的角α,α+45°的終邊上,所以t=-6舍去
則t的值為1
故選D
點(diǎn)評(píng):此題考查學(xué)生掌握任意角的三角函數(shù)的定義,靈活運(yùn)用兩角和與差的正切函數(shù)公式化簡(jiǎn)求值,是一道中檔題.