[2014·山西聯(lián)考]從一批含有13件正品,2件次品的產品中,不放回地任取3件,則取得次品數(shù)為1的概率是(  )
A.B.C.D.
B
設隨機變量X表示取出次品的個數(shù),X服從超幾何分布,其中N=15,M=2,n=3,它的可能的取值為0,1,2,相應的概率為P(X=1)=.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,A地到火車站共有兩條路徑L1和L2,現(xiàn)隨機抽取100位從A地到火車站的人進行調查,調查結果如下:
所用時間(分鐘)
10~20
20~30
30~40
40~50
50~60
選擇L1的人數(shù)
6
12
18
12
12
選擇L2的人數(shù)
0
4
16
16
4

(1)試估計40分鐘內不能         趕到火車站的概率;
(2)分別求通過路徑L1和L2所用時間落在上表中各時間段內的頻率;
(3)現(xiàn)甲、乙兩人分別有40分鐘和50分鐘時間用于趕往火車站,為了盡量大可能在允許的時間內趕到火車站,試通過計算說明,他們應如何選擇各自的 路徑.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某中學為豐富教工生活,國慶節(jié)舉辦教工趣味投籃比賽,有、兩個定點投籃位置,在點投中一球得2分,在點投中一球得3分.其規(guī)則是:按先的順序投
籃.教師甲在點投中的概率分別是,且在兩點投中與否相互獨立.
(1)若教師甲投籃三次,試求他投籃得分X的分布列和數(shù)學期望;
(2)若教師乙與甲在A、B點投中的概率相同,兩人按規(guī)則各投三次,求甲勝乙的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

假設某班級教室共有4扇窗戶,在每天上午第三節(jié)課上課預備鈴聲響起時,每扇窗戶或被敞開或被關閉,且概率均為0.5.記此時教室里敞開的窗戶個數(shù)為X.
(1)求X的分布列;
(2)若此時教室里有兩扇或兩扇以上的窗戶被關閉,班長就會將關閉的窗戶全部敞開,否則維持原狀不變.記每天上午第三節(jié)課上課時該教室里敞開的窗戶個數(shù)為Y,求Y的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某電視臺在一次對收看文藝節(jié)目和新聞節(jié)目觀眾的抽樣調查中,隨機抽取了100名電視觀眾,相關的數(shù)據如下表所示:
 
文藝節(jié)目
新聞節(jié)目
總計
20至40歲
40
18
58
大于40歲
15
27
42
總計
55
45
100
 
(1)由表中數(shù)據直觀分析,收看新聞節(jié)目的觀眾是否與年齡有關?
(2)用分層抽樣方法在收看新聞節(jié)目的觀眾中隨機抽取5名,大于40歲的觀眾應該抽取幾名?
(3)在上述抽取的5名觀眾中任取2名,求恰有1名觀眾的年齡為20至40歲的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某校要用三輛校車從新校區(qū)把教師接到老校區(qū),已知從新校區(qū)到老校區(qū)有兩條公路,校車走公路①堵車的概率為,不堵車的概率為;校車走公路②堵車的概率為,不堵車的概率為.若甲、乙兩輛校車走公路①,丙校車由于其他原因走公路②,且三輛車是否堵車相互之間沒有影響.
(1)若三輛校車中恰有一輛校車被堵的概率為,求走公路②堵車的概率;
(2)在(1)的條件下,求三輛校車中被堵車輛的個數(shù)的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

為調查某校學生喜歡數(shù)學課的人數(shù)比例,采用如下調查方法:
(1)在該校中隨機抽取100名學生,并編號為1,2,3,  ,100;
(2)在箱內放置兩個白球和三個紅球,讓抽取的100名學生分別從箱中隨機摸出一球,記住其顏色并放回;
(3)請下列兩類學生舉手:(。┟桨浊蚯姨枖(shù)為偶數(shù)的學生;(ⅱ)摸到紅球且不喜歡數(shù)學課的學生.
如果總共有26名學生舉手,那么用概率與統(tǒng)計的知識估計,該校學生中喜歡數(shù)學課的人數(shù)比例大約是(   )
A.88%B.90%C.92%D.94%

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

從4名男同學和3名女同學中隨機選出3人參加演講比賽,則女同學被抽到的數(shù)學期望為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

現(xiàn)有10名教師,其中男教師6名,女教師4名.
(1)要從中選2名教師去參加會議,有多少種不同的選法?
(2)現(xiàn)要從中選出4名教師去參加會議,求男、女教師各選2名的概率.

查看答案和解析>>

同步練習冊答案