(本題滿分14分)已知橢圓經(jīng)過點,離心率為

(1)求橢圓的方程;

(2)直線與橢圓交于兩點,點是橢圓的右頂點.直線與直線分別與軸交于點,試問以線段為直徑的圓是否過軸上的定點?若是,求出定點坐標;若不是,說明理由.

(1);(2)

【解析】

試題分析:(1)由題意得,解得,進而求出橢圓的方程.

(2)以線段為直徑的圓過軸上的定點,由

設(shè),則有,,進而可得點,可知直線的方程為,故點;直線的方程為,故點,

若以線段為直徑的圓過軸上的定點,則等價于恒成立.即可得到.解得,進而可得以線段為直徑的圓過軸上的定點

試題解析:【解析】
(1)由題意得,解得,

所以橢圓的方程是. 4分

(2)以線段為直徑的圓過軸上的定點.

設(shè),則有.6分

又因為點是橢圓的右頂點,所以點

由題意可知直線的方程為,故點

直線的方程為,故點. 8分

若以線段為直徑的圓過軸上的定點,則等價于恒成立. 9分

又因為,,

所以恒成立.

又因為,

,

所以.解得

故以線段為直徑的圓過軸上的定點. 14分

考點:1.橢圓的方程;2.直線與橢圓的位置關(guān)系.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年內(nèi)蒙古霍林郭勒市高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:選擇題

下列集合中,表示方程組的解集的是( )

A、 B、 C、 D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年福建省高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:選擇題

方程的一個根所在的區(qū)間為 ( )

A. (-3,-2) B. (-2,-1) C. (-1,0) D. (0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年浙江省金華市高三上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:填空題

直線的傾斜角是__________________;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年浙江省金華市高三上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

是直線和直線垂直的( )

A.充分不必要條件 B.必要不充分條件

C.充分必要條件 D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年浙江省金華市高三上學(xué)期期中考試理科數(shù)學(xué)試卷(解析版) 題型:填空題

已知,若實數(shù)滿足,則的最小值為 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年浙江省金華市高三上學(xué)期期中考試理科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知雙曲線的左、右焦點分別為,點在雙曲線的左支上,且,則此雙曲線離心率的最大值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年寧夏銀川市高三上學(xué)期期中考試理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知棱長為l的正方體中,E,F(xiàn),M分別是AB、AD、的中點,又P、Q分別在線段上,且設(shè)面面MPQ=,則下列結(jié)論中不成立的是( )

A.面ABCD

B.AC

C.面MEF與面MPQ不垂直

D.當x變化時,不是定直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年北京市高三上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知向量(1,0),(0,1),R),向量如圖所示.則( )

A.存在,使得向量與向量垂直

B.存在,使得向量與向量夾角為

C.存在,使得向量與向量夾角為

D.存在,使得向量與向量共線

查看答案和解析>>

同步練習冊答案