【題目】

(1),所對應的自變量取值區(qū)間的長度為(閉區(qū)間的長度為),試求的最大值;

(2)是否存在這樣的使得當,?若存在,求出的取值范圍;若不存在,說明理由.

【答案】12)存在, 的取值范圍為

【解析】

1)由具體到一般,針對的范圍條件,作差比較出的大小,在時,自變量取哪些值時,進而確定求出的解析式,對參數(shù)的討論要結合具體的數(shù)值,從直觀到抽象采取分類策略.

2)本問利用(1)的結論容易求解,需要注意的是等價轉化思想的應用,分類討論思想重新在本問中的體現(xiàn).

1)因為,所以,則

①當時,

因為,,

所以由,

解得,

從而當時,

②當時,

因為

所以由,

解得,

從而當時,

③當時,

因為,

從而一定不成立

綜上得,當且僅當時,

從而當時,取得最大值為

2)“當時,”等價于“,恒成立”,

即“恒成立”

①當時,,

則當時,,

可化為,即,

而當時,,

所以,從而適合題意

②當時,

1)當時,可化為,即,而,

所以,此時要求

2)當時,可化為,

此時只要求

3)當時,可化為,即,而

所以,此時要求

由(1)(2)(3),得符合題意要求.

綜合①②知,滿足題意的存在,且的取值范圍是

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】對于實數(shù),將滿足為整數(shù)的實數(shù)稱為實數(shù)的小數(shù)部分,用記號表示.對于實數(shù),無窮數(shù)列滿足如下條件:,其中

(1)若,求數(shù)列

(2)當時,對任意的,都有,求符合要求的實數(shù)構成的集合;

(3)若是有理數(shù),設是整數(shù),是正整數(shù),互質),問對于大于的任意正整數(shù),是否都有成立,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,以橢圓)的右焦點為圓心,為半徑作圓(其中為已知橢圓的半焦距),過橢圓上一點作此圓的切線,切點為.

1)若為橢圓的右頂點,求切線長;

2)設圓軸的右交點為,過點作斜率為)的直線與橢圓相交于、兩點,若恒成立,且.求:

(。的取值范圍;

(ⅱ)直線被圓所截得弦長的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某溫室大棚規(guī)定,一天中,從中午12點到第二天上午8點為保溫時段,其余4小時為工作作業(yè)時段,從中午12點連續(xù)測量20小時,得出此溫室大棚的溫度y(單位:度)與時間t(單位:小時,)近似地滿足函數(shù)關系,其中,b為大棚內一天中保溫時段的通風量。

1)若一天中保溫時段的通風量保持100個單位不變,求大棚一天中保溫時段的最低溫度(精確到0.1℃);

2)若要保持一天中保溫時段的最低溫度不小于17℃,求大棚一天中保溫時段通風量的最小值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《上海市生活垃圾管理條例》于201971日正式實施,某小區(qū)全面實施垃圾分類處理,已知該小區(qū)每月垃圾分類處理量不超過300噸,每月垃圾分類處理成本(元)與每月分類處理量(噸)之間的函數(shù)關系式可近似表示為,而分類處理一噸垃圾小區(qū)也可以獲得300元的收益.

1)該小區(qū)每月分類處理多少噸垃圾,才能使得每噸垃圾分類處理的平均成本最低;

2)要保證該小區(qū)每月的垃圾分類處理不虧損,每月的垃圾分類處理量應控制在什么范圍?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于定義在上的函數(shù),若函數(shù)滿足:①在區(qū)間上單調遞減,②存在常數(shù),使其值域為,則稱函數(shù)是函數(shù)的“漸近函數(shù)”.

(1)判斷函數(shù)是不是函數(shù)的“漸近函數(shù)”,說明理由;

(2)求證:函數(shù)不是函數(shù)的“漸近函數(shù)”;

(3)若函數(shù),,求證:當且僅當時,的“漸近函數(shù)”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中.

1)求函數(shù)的值域;

2)用表示實數(shù),的最大值,記函數(shù),討論函數(shù)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列11,12,2,1,24,3,12,48,4,1,24,8,16,5,,其中第一項是,第二項是1,接著兩項為,,接著下一項是2,接著三項是,,接著下一項是3,依此類推.記該數(shù)列的前項和為,則滿足的最小的正整數(shù)的值為(

A.65B.67C.75D.77

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著創(chuàng)新驅動發(fā)展戰(zhàn)略的不斷深入實施,高新技術企業(yè)在科技創(chuàng)新和經(jīng)濟發(fā)展中的帶動作用日益凸顯,某能源科學技術開發(fā)中心擬投資開發(fā)某新型能源產品,估計能獲得萬元的投資收益,現(xiàn)準備制定一個對科研課題組的獎勵議案:獎金(單位:萬元)隨投資收益(單位:萬元)的增加而增加,獎金不超過萬元,同時獎金不超過投資收益的.(即:設獎勵方案函數(shù)模擬為時,則公司對函數(shù)模型的基本要求是:當時,①是增函數(shù);②恒成立;③恒成立.

1)現(xiàn)有兩個獎勵函數(shù)模型:(I;(II.試分析這兩個函數(shù)模型是否符合公司要求?

2)已知函數(shù)符合公司獎勵方案函數(shù)模型要求,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案