【題目】已知直線l的參數(shù)方程為 (t為參數(shù)),曲線C的參數(shù)方程為 (θ為參數(shù))
(1)以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸(與直角坐標(biāo)系xOy取相同的長度單位)建立極坐標(biāo)系,若點(diǎn)P的極坐標(biāo)為(4, ),判斷點(diǎn)P與直線l的位置關(guān)系;
(2)設(shè)點(diǎn)Q是曲線C上的一個(gè)動點(diǎn),利用曲線C的參數(shù)方程求Q到直線l的距離的最大值與最小值的差.

【答案】
(1)解:把點(diǎn)P的極坐標(biāo)(4, ),轉(zhuǎn)化成直角坐標(biāo)P(2,2 ),

把直線l的參數(shù)方程: ,化為直角坐標(biāo)方程為y= x+1,

由于點(diǎn)P的坐標(biāo)不滿足直線l的方程,故P不在直線l上


(2)解:點(diǎn)Q是曲線C上的一個(gè)動點(diǎn),曲線C的參數(shù)方程為 (θ為參數(shù)),

曲線C的直角坐標(biāo)方程為:(x﹣2)2+y2=1,

∴曲線C表示已(2,0)為圓心,1為半徑的圓,

圓心到直線的距離為d= = + ,

故點(diǎn)Q到直線l的距離的最小值為d﹣r=

最大值為d+r= + ,

∴曲線C的參數(shù)方程求Q到直線l的距離的最大值與最小值的差2


【解析】(1)將P的極坐標(biāo)(4, ),轉(zhuǎn)化成直角坐標(biāo)P(2,2 ),將參數(shù)方程轉(zhuǎn)化成直角坐標(biāo),由P點(diǎn)坐標(biāo)不滿足直線l的方程,P不在直線l上;(2)將C的參數(shù)方程轉(zhuǎn)化成直角坐標(biāo)方程,取得圓心坐標(biāo)及半徑,由點(diǎn)到直線記得距離公式求得圓心到直線的距離d,即可求得點(diǎn)Q到直線l的距離的最小值為d﹣r和最大值為d+r,兩式相減即可求得結(jié)果.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2016年上半年,股票投資人袁先生同時(shí)投資了甲、乙兩只股票,其中甲股票賺錢的概率為 ,賠錢的概率是 ;乙股票賺錢的概率為 ,賠錢的概率為 .對于甲股票,若賺錢則會賺取5萬元,若賠錢則損失4萬元;對于乙股票,若賺錢則會賺取6萬元,若賠錢則損失5萬元.
(Ⅰ)求袁先生2016年上半年同時(shí)投資甲、乙兩只股票賺錢的概率;
(Ⅱ)試求袁先生2016年上半年同事投資甲、乙兩只股票的總收益的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線E:y2=2px(p>0)的準(zhǔn)線與x軸交于點(diǎn)K,過點(diǎn)K作圓(x﹣5)2+y2=9的兩條切線,切點(diǎn)為M,N,|MN|=3
(1)求拋物線E的方程;
(2)設(shè)A,B是拋物線E上分別位于x軸兩側(cè)的兩個(gè)動點(diǎn),且 (其中O為坐標(biāo)原點(diǎn)).
①求證:直線AB必過定點(diǎn),并求出該定點(diǎn)Q的坐標(biāo);
②過點(diǎn)Q作AB的垂線與拋物線交于G,D兩點(diǎn),求四邊形AGBD面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:(x﹣2)2+(y﹣3)2=16及直線l:(m+2)x+(3m+1)y=15m+10(m∈R).

(1)證明:不論m取什么實(shí)數(shù),直線l與圓C恒相交;

(2)求直線l被圓C截得的弦長的最短長度及此時(shí)的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方體ABCD﹣A1B1C1D1中,AA1=AD=a,E為CD上任意一點(diǎn).
(I)求證:B1E⊥AD1;
(Ⅱ)若CD= a,是否存在這樣的E點(diǎn),使得AD1與平面B1AE成45°的角?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的右焦點(diǎn)為,離心率為,過作與軸垂直的直線與橢圓交于兩點(diǎn),

(1)求橢圓的方程;

(2)設(shè)過點(diǎn)的直線的斜率存在且不為0,直線交橢圓于兩點(diǎn),若中點(diǎn)為,為原點(diǎn),直線于點(diǎn),若以為直徑的圓過右焦點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知:關(guān)于x的不等式(mx-(m+1))(x-2)>0(mR)的解集為集合P

(I)當(dāng)m>0時(shí),求集合P;

(II)若{}P,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“微信搶紅包”自2015年以來異;鸨,在某個(gè)微信群某次進(jìn)行的搶紅包活動中,若所發(fā)紅包的總金額為9元,被隨機(jī)分配為1.49元,1.31元,2.19元,3.40元,0.61元,共5份,供甲、乙等5人搶,每人只能搶一次,則甲、乙二人搶到的金額之和不低于4元的概率是( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)處取得極大值,則實(shí)數(shù)的取值范圍是_____

查看答案和解析>>

同步練習(xí)冊答案