【題目】已知定圓,動圓過點且與圓相切,記圓心的軌跡為.

(I)求軌跡的方程;

)若與軸不重合的直線過點,且與軌跡交于兩點,問:在軸上是否存在定點,使得為定值?若存在,試求出點的坐標和定值;若不存在,請說明理由.

答案見解析

【解析】(I)因為點在圓內(nèi),所以圓內(nèi)切于圓,因為,所以點的軌跡為以為焦點的橢圓,……3分

,,,所以,所以軌跡的方程為.……5分

)設直線的方程為

,…………………………6分

,所以,

根據(jù)題意,假設軸上存在定點

使得為定值.…………8分

,

要使上式為定值,即與無關,則,…………10分

解得,此時,

所以在軸上存在定點,使得為定值,且定值為.……12分

【命題意圖】本題考查圓與圓的位置關系、軌跡方程、直線和橢圓的位置關系等基礎知識,意在考查數(shù)形結合思想和綜合分析問題、解決問題的能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】第十二屆全國人民代表大會第五次會議和政協(xié)第十二屆全國委員會第五次會議(簡稱兩會)將分別201735日和3月3日在北京開幕.全國兩會召開前夕,網(wǎng)推出兩會熱點大型調(diào)查,調(diào)查數(shù)據(jù)表明,民生問題是百姓最為關心的熱點,參與調(diào)查者中關注此問題的約占.現(xiàn)從參與者中隨機選出200人,并將這200人按年齡分組:第,第,第,第,第,得到的頻率分布直方圖如圖所示:

(1)現(xiàn)在要從年齡較小的第1,2,3組中用分層抽樣的方法抽取12人,再從這12人中隨機抽取3人贈送禮品,求抽取的3人中至少有人年齡在第3組的概率;

(2)所有參與調(diào)查的人(人數(shù)很多)中任意選出3人,記關注民生問題的人數(shù)為X,求X的分布列與期望;

(3)把年齡在第1,2,3組的居民稱為青少年組,年齡在第4,5組的居民稱為中老年組,若選出的200人中關注民生問題的人中老年人有10人,問是否有的把握認為是否關注民生問題與年齡有關?

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點在橢圓上,設分別為左頂點、上頂點、下頂點,且下頂點到直線的距離為

(1)求橢圓的方程;

(2)如圖所示,過點作斜率為的直線交橢圓于,交軸于點,若中點,過作與直線垂直的直線,證明:對于任意的,直線恒過定點,并求出此定點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在R上的偶函數(shù)f(x),當x∈(﹣∞,0]時的解析式為f(x)=x2+2x
(1)求函數(shù)f(x)在R上的解析式;
(2)畫出函數(shù)f(x)的圖象并直接寫出它的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)),在以原點為極點, 軸正半軸為極軸的極坐標系中,直線的極坐標方程為.

(1)求的普通方程和的傾斜角;

(2)設點, 交于兩點,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,圓 軸的正半軸交于點,以為圓心的圓 )與圓交于, 兩點.

(1)若直線與圓切于第一象限,且與坐標軸交于, ,當直線長最小時,求直線的方程;

(2)設是圓上異于 的任意一點,直線、分別與軸交于點,問是否為定值?若是,請求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x3﹣3x.

(Ⅰ)求函數(shù)f(x)的極值;

(Ⅱ)若關于x的方程f(x)=k有3個實根,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】人最寶貴的是生命,然而有時候最不善待生命的恰恰是人類自己,在交通運輸業(yè)發(fā)展迅猛的今天,由于不懂得交通法規(guī),以及人們的交通安全觀念和自我保護意識還沒有跟上時代的步伐,那些在交通復雜多變的地方而引發(fā)的交通事故也是接連不斷.為了警示市民,某市對近三年內(nèi)某多發(fā)事故路口在每天時間段內(nèi)發(fā)生的480次事故中隨機抽取100次進行調(diào)研,數(shù)據(jù)按事發(fā)時間分成8組:(單位:小時),制成了如圖所示的頻率分布直方圖.

(Ⅰ)求圖中的值,并根據(jù)頻率分布直方圖估計這480次交通事故發(fā)生在時間段的次數(shù);

(Ⅱ)在抽出的100次交通事故中按時間段采用分層抽樣的方法抽取10次進行個案分析,再從這10次交通事故中選取3次交通事故作重點專題研究.記這3次交通事故中發(fā)生時間在的次數(shù)為,求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】個人排成一排,在下列情況下,各有多少種不同排法?

(1)甲不排頭,也不排尾,

(2)甲、乙、丙三人必須在一起

(3)甲、乙之間有且只有兩人,

查看答案和解析>>

同步練習冊答案