【題目】我們把定義域為且同時滿足以下兩個條件的函數(shù)稱為“函數(shù)”:(1)對任意的,總有;(2)若,,則有成立,下列判斷正確的是( )
A.若為“函數(shù)”,則
B.若為“函數(shù)”,則在上為增函數(shù)
C.函數(shù)在上是“函數(shù)”
D.函數(shù)在上是“函數(shù)”
【答案】ABD
【解析】
利用“函數(shù)”的定義對每一個命題逐一分析,必須同時滿足“函數(shù)”的兩個條件,才是“函數(shù)”,否則就是假命題.
A.因為對任意的,總有,所以,又因為,,則有成立,所以所以,綜合得,所以若為“函數(shù)”,則,是真命題;
B.設(shè)所以,
因為
所以若為“函數(shù)”,則在上為增函數(shù),是真命題;
C.顯然函數(shù)滿足條件(1),如果則所以;如果設(shè)則所以,所以函數(shù)在上是“函數(shù)”是假命題;
D.顯然,所以滿足條件(1),,所以滿足條件(2).所以函數(shù)在上是“函數(shù)”是真命題.
故選:ABD
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下判斷正確的是 ( )
A. 函數(shù)為上的可導(dǎo)函數(shù),則是為函數(shù)極值點的充要條件
B. 若命題為假命題,則命題與命題均為假命題
C. 若,則的逆命題為真命題
D. 在中,“”是“”的充要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2-2ax-1+a,a∈R.
(1)若a=2,試求函數(shù)y=(x>0)的最小值;
(2)對于任意的x∈[0,2],不等式f(x)≤a成立,試求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)的定義域為R,并且圖象關(guān)于y軸對稱,當x≤-1時,y=f(x)的圖象是經(jīng)過點(-2,0)與(-1,1)的射線,又在y=f(x)的圖象中有一部分是頂點在(0,2),且經(jīng)過點(1,1)的一段拋物線.
(1)試求出函數(shù)f(x)的表達式,作出其圖象;
(2)根據(jù)圖象說出函數(shù)的單調(diào)區(qū)間,以及在每一個單調(diào)區(qū)間上函數(shù)是增函數(shù)還是減函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)關(guān)于某設(shè)備的使用年限(年)和所支出的維修費用(萬元)有如下統(tǒng)計資料:
/年 | 2 | 3 | 4 | 5 | 6 |
/萬元 |
若由資料知, 對呈線性相關(guān)關(guān)系,試求:
(1)回歸直線方程;
(2)估計使用年限為10年時,維修費用約是多少?
參考公式:回歸直線方程: .其中
(注: )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象過點,且不等式的解集為.
(1)求的解析式;
(2)若在區(qū)間上有最小值,求實數(shù)的值;
(3)設(shè),若當時,函數(shù)的圖象恒在圖象的上方,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點P是拋物線y2=﹣8x上一點,設(shè)P到此拋物線準線的距離是d1,到直線x+y﹣10=0的距離是d2,則dl+d2的最小值是__.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù).
(1)當時,解不等式;
(2)若關(guān)于的方程的解集中恰有一個元素,求的取值范圍;
(3)設(shè),若對任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過1,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為研究晝夜溫差大小與某疾病的患病人數(shù)之間的關(guān)系,經(jīng)查詢得到今年上半年每月15號的晝夜溫差情況與患者的人數(shù)如表:
日期 | 1月15日 | 2月15日 | 3月15日 | 4月15日 | 5月15日 | 6月15日 |
晝夜溫差 | 10 | 11 | 10 | 10 | 9 | 7 |
患者人數(shù)個 | 21 | 26 | 20 | 18 | 16 | 8 |
研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.
若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問中所得線性回歸方程是否理想?
參考公式:,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com