【題目】如圖,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是等腰梯形,∠ADC=120°,AB=2CD=2,平面D1DCC1垂直平面ABCD,D1C⊥AB,M是線段AB的中點.
(Ⅰ)求證:D1M∥面B1BCC1;
(Ⅱ)若DD1=2,求平面C1D1M和平面ABCD所成的銳角的余弦值.
【答案】證明(Ⅰ)因為四邊形ABCD是等腰梯形,且AB=2CD,所以AB∥DC.
又由M是AB的中點,因此CD∥MB且CD=MB.
在四棱柱ABCD﹣A1B1C1D1中,因為CD∥C1D1 , CD=C1D1 ,
可得C1D1∥MB,C1D1=MB,所以四邊形BMD1C1為平行四邊形,
因此D1M∥BC1 . 又D1M平面B1BCC1 , BC1平面B1BCC1 ,
所以D1M∥平面B1BCC1
(Ⅱ)解:方法一:如圖(2),連接AC,MC.
由(Ⅰ)知CD∥AM且CD=AM,
所以四邊形AMCD為平行四邊形,
可得BC=AD=MC,
由題意∠ABC=∠PAB=60°,
所以△MBC為正三角形,
因此AB=2BC=2,CA= ,
因此CA⊥CB.
又D1C⊥AB,CD∥AB,故D1C⊥CD,而平面D1DCC1垂直平面ABCD且交于CD,則D1C⊥平面ABCD
以C為坐標原點,建立如圖(2)所示的空間直角坐標系C﹣xyz
由DD1=2得D1C= ,所以A( ,0,0),B(0,1,0),D1(0,0, )
因此M ,所以 , 設平面C1D1M的一個法向量為 ,
可得平面C1D1M的一個法向量
又 為平面ABCD的一個法向量
因此
所以平面C1D1M和平面ABCD所成的角(銳角)的余弦值為
方法二:由(Ⅰ)知平面D1C1M∩平面ABCD=AB,過點C向AB引垂線交AB于點N,
連接D1N,如圖(3).
由D1C⊥AB,CD∥AB,故D1C⊥CD,
而平面D1DCC1垂直平面ABCD且交于CD,
則D1C⊥平面ABCD,
可得D1N⊥AB,
因此∠D1NC為二面角C1﹣AB﹣C的平面角
在Rt△BNC中,BC=1,∠NBC=60°,可得CN= .
所以ND1= = .
在Rt△D1CN中,cos∠D1NC= ,
所以平面C1D1M和平面ABCD所成的角(銳角)的余弦值為
【解析】(Ⅰ)證明AB∥DC.說明以四邊形BMD1C1為平行四邊形,推出D1M∥BC1 . 然后證明D1M∥平面B1BCC1(Ⅱ)方法一連接AC,MC.以C為坐標原點,建立空間直角坐標系C﹣xyz,求出相關的坐標,求出平面C1D1M的一個法向量,平面ABCD的一個法向量,利用空間向量的數(shù)量積求解二面角的平面角的余弦函數(shù)值.方法二:說明∠D1NC為二面角C1﹣AB﹣C的平面角,通過在Rt△D1CN中,求解即可.
【考點精析】本題主要考查了直線與平面平行的判定的相關知識點,需要掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,PA⊥底面ABC,.點D,E,N分別為棱PA,PC,BC的中點,M是線段AD的中點,PA=AC=4,AB=2.
(1)求證:MN∥平面BDE;
(2)求二面角C-EM-N的正弦值;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,M為PC的中點.
(1)求異面直線AP,BM所成角的余弦值;
(2)點N在線段AD上,且AN=λ,若直線MN與平面PBC所成角的正弦值為 ,求λ的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠為了對新研發(fā)的一種產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到如下數(shù)據(jù):
(1)求回歸直線方程.
(2)預計在今后的銷售中,銷量與單價仍然服從(1)中的關系,且該產(chǎn)品的成本是5元/件,為使工廠獲得最大利潤,該產(chǎn)品的單價應定為多少元?(利潤=銷售收入-成本)
參考數(shù)據(jù)如下:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xoy中,曲線C1的參數(shù)方程為 (t為參數(shù)).在以坐標原點為極點,x軸正半軸為極軸的極坐標系中,曲線C2:ρ=4 sinθ. (Ⅰ)將C2的方程化為直角坐標方程;
(Ⅱ)設C1 , C2交于A,B兩點,點P的坐標為 ,求|PA|+|PB|.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】等差數(shù)列{an}中,其前n項和為Sn , 且 ,等比數(shù)列{bn}中,其前n項和為Tn , 且 ,(n∈N*)
(1)求an , bn;
(2)求{anbn}的前n項和Mn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xoy中,曲線C的參數(shù)方程為 (t為參數(shù),a>0)以坐標原點O為極點,以x軸正半軸為極軸,建立極坐標系,已知直線l的極坐標方程為 . (Ⅰ)設P是曲線C上的一個動點,當a=2時,求點P到直線l的距離的最小值;
(Ⅱ)若曲線C上的所有點均在直線l的右下方,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com