如圖,S(1,1)是拋物線(xiàn)為y2=2px(p>0)上的一點(diǎn),弦SC,SD分別交x小軸于A,B兩點(diǎn),且SA=SB.
(I)求證:直線(xiàn)CD的斜率為定值;
(Ⅱ)延長(zhǎng)DC交x軸于點(diǎn)E,若,求cos∠CSD的值.

【答案】分析:(1)將點(diǎn)(1,1)代入y2=2px,得2p=1,拋物線(xiàn)方程為y2=x,設(shè)直線(xiàn)SA的方程為y-1=k(x-1),C(x1,y1),與拋物線(xiàn)方程y2=x聯(lián)立得:ky2-y+1-k=0.再由根與系數(shù)的關(guān)系能夠?qū)С鲋本(xiàn)CD的斜率為定值.
(2)設(shè)E(t,0),由=,知,解得k=2,所以直線(xiàn)SA的方程為y=2x-1,由此能求出cos∠CSD=cos∠ASB的值.
解答:解:(1)將點(diǎn)(1,1)代入y2=2px,得2p=1
∴拋物線(xiàn)方程為y2=x(1分)
設(shè)直線(xiàn)SA的方程為y-1=k(x-1),C(x1,y1
與拋物線(xiàn)方程y2=x聯(lián)立得:ky2-y+1-k=0(2分)
∴y1+1=∴y1=-1
(3分)
由題意有SA=SB,∴直線(xiàn)SB的斜率為-k
(4分)
(5分)

(2)設(shè)E(t,0)
=

(6分)
∴k=2(7分)
∴直線(xiàn)SA的方程為y=2x-1(8分)
B(,0)∴A(,0)(9分)
同理(10分)
∴cos∠CSD=cos∠ASB=.(12分)
點(diǎn)評(píng):本題考查直線(xiàn)和圓錐曲線(xiàn)的位置關(guān)系,解題時(shí)要認(rèn)真審題,注意公式的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,S(1,1)是拋物線(xiàn)為y2=2px(p>0)上的一點(diǎn),弦SC,SD分別交x軸于A,B兩點(diǎn),且SA=SB.
(I)求證:直線(xiàn)CD的斜率為定值;
(Ⅱ)延長(zhǎng)DC交x軸于點(diǎn)E,若|EC|=
13
|DE|,求cos2∠CSD的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,S(1,1)是拋物線(xiàn)為y2=2px(p>0)上的一點(diǎn),弦SC,SD分別交x小軸于A,B兩點(diǎn),且SA=SB.
(I)求證:直線(xiàn)CD的斜率為定值;
(Ⅱ)延長(zhǎng)DC交x軸于點(diǎn)E,若
EC
=
1
3
ED
,求cos∠CSD的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年浙江省紹興市魯迅中學(xué)高三適應(yīng)性考試數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,S(1,1)是拋物線(xiàn)為y2=2px(p>0)上的一點(diǎn),弦SC,SD分別交x軸于A,B兩點(diǎn),且SA=SB.
(I)求證:直線(xiàn)CD的斜率為定值;
(Ⅱ)延長(zhǎng)DC交x軸于點(diǎn)E,若|EC|=|DE|,求cos2∠CSD的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年?yáng)|三省沈陽(yáng)、大連、長(zhǎng)春、哈爾濱高三第二次聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖,S(1,1)是拋物線(xiàn)為y2=2px(p>0)上的一點(diǎn),弦SC,SD分別交x小軸于A,B兩點(diǎn),且SA=SB.
(I)求證:直線(xiàn)CD的斜率為定值;
(Ⅱ)延長(zhǎng)DC交x軸于點(diǎn)E,若,求cos∠CSD的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案