【題目】已知數(shù)列{an}、{bn}都是公差為1的等差數(shù)列,其首項(xiàng)分別為a1、b1 , 且a1+b1=5,a1 , b1∈N* , 設(shè)cn=a ,則數(shù)列{cn}的前10項(xiàng)和等于(
A.55
B.70
C.85
D.100

【答案】C
【解析】解:∵a1+b1=5,a1 , b1∈N* , ∴a1 , b1有1和4,2和3,3和2,4和1四種可能,
當(dāng)a1 , b1為1和4的時(shí),c1= =4,前10項(xiàng)和為4+5+…+12+13=85;
當(dāng)a1 , b1為2和3的時(shí),c1= =4,前10項(xiàng)和為4+5+…+12+13=85;
當(dāng)a1 , b1為4和1的時(shí),c1= =4,前10項(xiàng)和為4+5+…+12+13=85;
當(dāng)a1 , b1為3和2的時(shí),c1= =4,前10項(xiàng)和為4+5+…+12+13=85;
故數(shù)列{cn}的前10項(xiàng)和等于85,
故選:C.
a1 , b1有1和4,2和3,3和2,4和1四種可能,由此進(jìn)行分類討論,利用等差數(shù)列的性質(zhì)能求出數(shù)列{cn}的前10項(xiàng)和.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某幾何體的三視圖的形狀、大小如圖所示.
(1)求該幾何體的體積;
(2)設(shè)點(diǎn)D、E分別在線段AC、BC上,且DE∥平面ABB1A1 , 求證:DE∥A1B1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校對高三年級的學(xué)生進(jìn)行體檢,現(xiàn)將高三男生的體重(單位:㎏)數(shù)據(jù)進(jìn)行整理后分成五組,并繪制頻率分布直方圖(如圖所示).根據(jù)一般標(biāo)準(zhǔn),高三男生的體重超過65㎏屬于偏胖,低于55㎏屬于偏瘦,已知圖中從左到右第一、第三、第四、第五小組的頻率分別為0.25、0.20、0.10、0.05,第二小組的頻率數(shù)為400,則該校高三年級的男生總數(shù)和體重正常的頻率分別為(

A.1000,0.50
B.800,0.50
C.1000,0.60
D.800,0.60

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于方程(m﹣1)x2+(3﹣m)y2=(m﹣1)(3﹣m),m∈R所表示的曲線C的性狀,下列說法正確的是(
A.對于m∈(1,3),曲線C為一個(gè)橢圓
B.m∈(﹣∞,1)∪(3,+∞)使曲線C不是雙曲線
C.對于m∈R,曲線C一定不是直線
D.m∈(1,3)使曲線C不是橢圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2,M是PD的中點(diǎn).

(1)求證:平面ABM⊥平面PCD;
(2)求直線CD與平面ACM所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】海水養(yǎng)殖場進(jìn)行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對比,收獲時(shí)各隨機(jī)抽取了100個(gè)網(wǎng)箱,測量各箱水產(chǎn)品的產(chǎn)量(單位:),其頻率分布直方圖如下:

(1)估計(jì)舊養(yǎng)殖法的箱產(chǎn)量低于50的概率并估計(jì)新養(yǎng)殖法的箱產(chǎn)量的平均值;

(2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān):

箱產(chǎn)量

箱產(chǎn)量

合計(jì)

舊養(yǎng)殖法

新養(yǎng)殖法

合計(jì)

附:,其中

0.050

0.010

0.001

3.841

6.635

10.828

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}滿足:a1=1,an+1+(﹣1)nan=2n﹣1.
(1)求a2 , a4 , a6;
(2)設(shè)bn=a2n , 求數(shù)列{bn}的通項(xiàng)公式;
(3)設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,求S2018

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)M(3,1),圓(x﹣1)2+(y﹣2)2=4.
(1)求過M點(diǎn)的圓的切線方程;
(2)若直線ax﹣y+4=0與圓相交于A、B兩點(diǎn),且弦AB的長為2 ,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高一年級的A,B,C三個(gè)班共有學(xué)生120人,為調(diào)查他們的體育鍛煉情況,用分層抽樣的方法從這三個(gè)班中分別抽取4,5,6名學(xué)生進(jìn)行調(diào)查. (Ⅰ)求A,B,C三個(gè)班各有學(xué)生多少人;
(Ⅱ)記從C班抽取學(xué)生的編號依次為C1 , C2 , C3 , C4 , C5 , C6 , 現(xiàn)從這6名學(xué)生中隨機(jī)抽取2名做進(jìn)一步的數(shù)據(jù)分析.
(i)列出所有可能抽取的結(jié)果;
(ii)設(shè)A為事件“編號為C1和C2的2名學(xué)生中恰有一人被抽到”,求事件A發(fā)生的概率.

查看答案和解析>>

同步練習(xí)冊答案