精英家教網 > 高中數學 > 題目詳情

【題目】已知定義在R上的偶函數f(x)和奇函數g(x)滿足.

(1)求函數f(x)g(x)的表達式;

(2)時,不等式恒成立,求實數a的取值范圍;

(3)若方程上恰有一個實根,求實數m的取值范圍.

【答案】123

【解析】

1)根據函數的奇偶性列出,解方程組即可求解.

2)由(1)令利用換元法將不等式轉化為,再采用分離參數法轉化為,求出的最小值即可求解.

3)根據題意令,將方程轉化為(1,2)上恰有一個實根,根據一元二次方程根的分布即可求解.

解:(1,①.

,②

聯立①②解得.

2恒成立,

恒成立,

為減函數,,

,即恒成立.

上單調遞減,,

a的取值范圍為

3恰有一個實根,

上恰有一個實根,

(1,2)上恰有一個實根,

時,得,由可知無解;

時,又則有

解得,綜上m的取值范圍為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某測試團隊為了研究“飲酒”對“駕車安全”的影響,隨機選取名駕駛員先后在無酒狀態(tài)、酒后狀態(tài)下進行“停車距離”測試.測試的方案:電腦模擬駕駛,以某速度勻速行駛,記錄下駕駛員的“停車距離”(駕駛員從看到意外情況到車子完全停下所需要的距離).無酒狀態(tài)與酒后狀態(tài)下的試驗數據分別列于表1和表2.

表1

停車距離(米)

頻數

24

42

24

9

1

表2

平均每毫升血液酒精含量毫克

10

30

50

70

90

平均停車距離

30

50

60

70

90

回答以下問題.

(1)由表1估計駕駛員無酒狀態(tài)下停車距離的平均數;

(2)根據最小二乘法,由表2的數據計算關于的回歸方程;

(3)該測試團隊認為:駕駛員酒后駕車的平均“停車距離”大于(1)中無酒狀態(tài)下的停車距離平均數的倍,則認定駕駛員是“醉駕”.請根據(2)中的回歸方程,預測當每毫升血液酒精含量大于多少毫克時為“醉駕”?(精確到個位)

(附:對于一組數據,…,,其回歸直線的斜率和截距的最小二乘估計分別為,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數為偶函數,且在上單調遞減,則的解集為  

A. B.

C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知是定義在上的奇函數,且,若時,有成立.

(1)判斷上的單調性,并用定義證明;

(2)解不等式;

(3)若對所有的恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對下列命題:

①直線與函數的圖象相交,則相鄰兩交點的距離為

②點 是函數的圖象的一個對稱中心;

③函數上單調遞減,則的取值范圍為;

④函數R恒成立,則.

其中所有正確命題的序號為____

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某市乘坐出租車的收費辦法如下:

不超過4千米的里程收費12元;超過4千米的里程按每千米2元收費(對于其中不足千米的部分,若其小于0.5千米則不收費,若其大于或等于0.5千米則按1千米收費;當車程超過4千米時,另收燃油附加費1元,相應系統收費的程序框圖如圖所示,其中(單位:千米)為行駛里程,(單位:元)為所收費用,用表示不大于的最大整數,則圖中處應填(

A.

B.

C.

D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數a>0a≠1)是奇函數.

1)求常數k的值;

2)若已知f1=,且函數在區(qū)間[1,+∞])上的最小值為—2,求實數m的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)當時,恒成立,求實數的取值范圍;

(2)證明:當時,函數有最小值,設最小值為,求函數的值域.

查看答案和解析>>

同步練習冊答案