已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為e,且b,e,
1
3
為等比數(shù)列,曲線y=8-x2恰好過橢圓的焦點.
(1)求橢圓C1的方程;
(2)設(shè)雙曲線C2
x2
m2
-
y2
n2
=1
的頂點和焦點分別是橢圓C1的焦點和頂點,設(shè)O為坐標原點,點A,B分別是C1和C2上的點,問是否存在A,B滿足
OA
=
1
2
OB
.請說明理由.若存在,請求出直線AB的方程.
(1)由y=8-x2=0可得x=±2
2

∴橢圓的焦點坐標為(±2
2
,0),即c=2
2

∵b,e,
1
3
為等比數(shù)列,
(
c
a
)2=
1
3
b

∵a2=b2+c2
a=2
3
,b=2

∴橢圓C1的方程為
x2
12
+
y2
4
=1
;
(2)假設(shè)存在A,B滿足
OA
=
1
2
OB
,則O,A,B三點共線且A,B不在y軸上,
設(shè)A(x1,y1),B(x2,y2),直線AB的方程為y=kx
由(1)知,C2的方程為
x2
8
-
y2
4
=1

直線與橢圓方程聯(lián)立,可得(1+3k2)x2=12,即x12=
12
1+3k2

直線方程與雙曲線方程聯(lián)立,可得(1-2k2)x2=8,即x22=
8
1-2k2

OA
=
1
2
OB
,∴x12=
1
4
x22

12
1+3k2
=
8
1-2k2

k2=
1
3

k=±
3
3

∴存在A,B滿足
OA
=
1
2
OB
,此時直線AB的方程為y=±
3
3
x
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的長軸長為4,離心率為
1
2
,F(xiàn)1,F(xiàn)2分別為其左右焦點.一動圓過點F2,且與直線x=-1相切.
(Ⅰ) (。┣髾E圓C1的方程;
(ⅱ)求動圓圓心軌跡C的方程;
(Ⅱ)在曲線C上有四個不同的點M,N,P,Q,滿足
MF2
NF2
共線,
PF2
QF2
共線,且
PF2
MF2
=0
,求四邊形PMQN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
3
,直線l:x-y+
5
=0與橢圓C1相切.
(1)求橢圓C1的方程;
(2)設(shè)橢圓C1的左焦點為F1,右焦點為F2,直線l1過點F1且垂直與橢圓的長軸,動直線l2垂直于直線l1于點P,線段PF2的垂直平分線交l2于點M,求點M的軌跡C2的方程;
(3)若A(x1,2),B(x2,y2),C(x0,y0)是C2上不同的點,且AB⊥BC,求實數(shù)y0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點分別為F1,F(xiàn)2,右頂點為A,P是橢圓C1上任意一點,設(shè)該雙曲線C2:以橢圓C1的焦點為頂點,頂點為焦點,B是雙曲線C2在第一象限內(nèi)的任意一點,且c=
a2-b2

(1)設(shè)
PF1
PF2
的最大值為2c2,求橢圓離心率;
(2)若橢圓離心率e=
1
2
時,是否存在λ,總有∠BAF1=λ∠BF1A成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)與雙曲線C2:x2-
y2
4
=1有公共的焦點,C2的一條漸近線與以C1的長軸為直徑的圓相交于A,B兩點.若C1恰好將線段AB三等分,則( 。
A、a2=
13
2
B、a2=3
C、b2=
1
2
D、b2=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點與拋物線C2:y2=4x的焦點F重合,橢圓C1與拋物線C2在第一象限的交點為P,|PF|=
5
3

(1)求橢圓C1的方程;
(2)過點A(-1,0)的直線與橢圓C1相交于M、N兩點,求使
FM
+
FN
=
FR
成立的動點R的軌跡方程.

查看答案和解析>>

同步練習(xí)冊答案