設(shè)a,b是不同的直線,α、β是不同的平面,則下列命題:
①若a⊥b,a∥α,則b∥β              ②若a∥α,α⊥β,則a⊥β
③若a⊥β,α⊥β,則a∥α              ④若a⊥b,a⊥α,b⊥β,則α⊥β
其中正確命題的個(gè)數(shù)是(  )
A、0B、1C、2D、3
考點(diǎn):空間中直線與直線之間的位置關(guān)系
專(zhuān)題:空間位置關(guān)系與距離
分析:利用空間中線線、線面、面面間的位置關(guān)系求解.
解答: 解:①若a⊥b,a∥α,則b與β相交、平行或b?β,故①錯(cuò)誤;
②若a∥α,α⊥β,則a與β相交、平行或a?β,故②錯(cuò)誤;
③若a⊥β,α⊥β,則a∥α或a?α,故③錯(cuò)誤;
④若a⊥b,a⊥α,b⊥β,則由平面與平面垂直的判定定理知α⊥β,故④正確.
故選:B.
點(diǎn)評(píng):本題考查命題真假判斷,是基礎(chǔ)題,解題時(shí)要注意空間思維能力的培養(yǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角三角形ABC中,∠A=90°,過(guò)A作BC邊的高AB,有下列結(jié)論
1
AD2
=
1
AB2
+
1
AC2
.請(qǐng)利用上述結(jié)論,類(lèi)似地推出在空間四面體O-ABC中,若OA⊥OB,OA⊥OC,OB⊥OC,O點(diǎn)到平面ABC的高為OD,則
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列四個(gè)命題:
①集合{a1,a2,a3,a4}的真子集的個(gè)數(shù)為15;
②(2
x
-
1
x
6的二項(xiàng)展開(kāi)式中的常數(shù)項(xiàng)為160;
1
-1
(sin2013x+
1-x2
)dx=
π
2

④已知x∈R,條件p:x2<x,條件q:
1
x
≥1,則p是q的充分必要條件,
其中真命題的個(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sin(θ-π)=-
3
5
且θ是第二象限角,則sinθ+2cosθ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若等差數(shù)列{an}滿足a12+a1002≤50,則S=a100+a101+…+a199的最大值為( 。
A、600B、500
C、800D、200

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
log2(1-x)+1,-1≤x<0
x3-3x+2,0≤x≤a
的值域是[0,2],則實(shí)數(shù)a的取值范圍是( 。
A、(0,1]
B、[1,
3
]
C、[1,2]
D、[
3
,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示的程序框圖.若兩次輸入x的值分別為π和-
π
3
,則兩次運(yùn)行程序輸出的b值分別為(  )
A、π,-
3
2
B、1,
3
2
C、0,
3
2
D、-π,-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等比數(shù)列{an}的各項(xiàng)均為正數(shù),且a5a6+a4a7=18,則a1a10=( 。
A、9B、10C、11D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:x≤1,命題q:0<x<1.則命題p是命題q的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案