【題目】設(shè)A(x1 , y1),B(x2 , y2)是橢圓 上的兩點(diǎn),已知向量 =( , ), =( , ),若 =0且橢圓的離心率e= ,短軸長為2,O為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)試問:△AOB的面積是否為定值?如果是,請(qǐng)給予證明;如果不是,請(qǐng)說明理由.
【答案】解:(Ⅰ)依題意知2b=2,∴b=1,e= = =
∴a=2,c= =
∴橢圓的方程為
(Ⅱ)①當(dāng)直線AB斜率不存在時(shí),即x1=x2,y1=﹣y2,
∵ =0
∴x12﹣ =0
∴y12=4x12
又A(x1,y1)在橢圓上,所以x12+ =1
∴|x1|= ,|y1|=
s= |x1||y1﹣y2|=1
所以三角形的面積為定值.
②當(dāng)直線AB斜率存在時(shí):設(shè)AB的方程為y=kx+b
消去y得(k2+4)x2+2kbx+b2﹣4=0
∴x1+x2= ,x1x2= ,△=(2kb)2﹣4(k2+4)(b2﹣4)>0
而 =0,
∴x1x2+ =0
即x1x2+ =0代入整理得
2b2﹣k2=4
S= |AB|= = =1
綜上三角形的面積為定值1.
【解析】(1)依題意可求得b,進(jìn)而根據(jù)離心率求得a,則橢圓方程可得.(2)先看當(dāng)直線AB斜率不存在時(shí),即x1=x2,y1=y2,根據(jù) =0代入求得x12﹣ =0把點(diǎn)A代入橢圓方程,求得A點(diǎn)橫坐標(biāo)和縱坐標(biāo)的絕對(duì)值,進(jìn)而求得△AOB的面積的值;當(dāng)直線AB斜率存在時(shí):設(shè)AB的方程為y=kx+b與橢圓方程聯(lián)立消去y,根據(jù)偉大定理求得x1+x2和x1x2的表達(dá)式代入 =0中整理可求得2b2﹣k2=4代入三角形面積公式中求得求得△AOB的面積的值為定值.最后綜合可得答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在R上的偶函數(shù),且f(x+2)=f(x)對(duì)x∈R恒成立,當(dāng)x∈[0,1]時(shí),f(x)=2x , 則 =( )
A.
B.
C.
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為圓心且與直線mx﹣y﹣2m+1=0(m∈R)相切的所有圓中,半徑最大的圓的標(biāo)準(zhǔn)方程為( )
A.x2+y2=5
B.x2+y2=3
C.x2+y2=9
D.x2+y2=7
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)求該函數(shù)的最小正周期;
(2)求該函數(shù)的單調(diào)遞減區(qū)間;
(3)用“五點(diǎn)法”作出該函數(shù)在長度為一個(gè)周期的閉區(qū)間上的簡圖.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓A:(x+1)2+y2=16,圓C過點(diǎn)B(1,0)且與圓A相切,設(shè)圓心C的軌跡為曲線E.
(Ⅰ)求曲線E的方程;
(Ⅱ)過點(diǎn)B作兩條互相垂直的直線l1,l2,直線l1與E交于M,N兩點(diǎn),直線l2與圓A交于P,Q兩點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知橢圓C1: =1和C2:x2+ =1.P為C1上的動(dòng)點(diǎn),Q為C2上的動(dòng)點(diǎn),w是 的最大值.記Ω={(P,Q)|P在C1上,Q在C2上,且 =w},則Ω中元素個(gè)數(shù)為( )
A.2個(gè)
B.4個(gè)
C.8個(gè)
D.無窮個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)預(yù)測,某地第n(n∈N*)個(gè)月共享單車的投放量和損失量分別為an和bn(單位:輛),其中an= ,bn=n+5,第n個(gè)月底的共享單車的保有量是前n個(gè)月的累計(jì)投放量與累計(jì)損失量的差.
(1)求該地區(qū)第4個(gè)月底的共享單車的保有量;
(2)已知該地共享單車停放點(diǎn)第n個(gè)月底的單車容納量Sn=﹣4(n﹣46)2+8800(單位:輛).設(shè)在某月底,共享單車保有量達(dá)到最大,問該保有量是否超出了此時(shí)停放點(diǎn)的單車容納量?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若樣本的平均數(shù)是,方差是,則對(duì)樣本,下列結(jié)論正確的是 ( )
A. 平均數(shù)為14,方差為5 B. 平均數(shù)為13,方差為25
C. 平均數(shù)為13,方差為5 D. 平均數(shù)為14,方差為2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,P,Q分別為AE,AB的中點(diǎn).
(Ⅰ)證明:PQ∥平面ACD;
(Ⅱ)求AD與平面ABE所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com