【題目】若函數(shù)處有極小值,則實(shí)數(shù)等于__________.

【答案】1

【解析】

fx)=ax3﹣2x2+a2x,知f′(x)=3ax2﹣4x+a2,由fx)在x=1處取得極小值,知f′(1)=3a﹣4+a2=0,由此能求出a,再根據(jù)條件檢驗(yàn)即可.

fx)=ax3﹣2x2+a2x,

f′(x)=3ax2﹣4x+a2,

fx)=ax3﹣2x2+a2xx=1處取得極小值,

f′(1)=3a﹣4+a2=0,

解得a=1或a=﹣4,

又當(dāng)a=-4時(shí),f′(x)=-12x2﹣4x+16=-4(x-1)(3x+4),此時(shí)fx在(上單增,在(1,上單減,所以x=1時(shí)取得極大值,舍去;

又a=1時(shí),f′(x)=3x2﹣4x+1=(x-1)(3x-1),此時(shí)fx在(上單減,在(1,上單增,符合在x=1處取得極小值,

所以a=1.

故答案為:1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)fx)滿足條件f0)=1,及fx+1)﹣fx)=2x

1)求函數(shù)fx)的解析式;

2)在區(qū)間[1,1]上,yfx)的圖象恒在y2x+m的圖象上方,試確定實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)化肥廠生產(chǎn)甲、乙兩種混合肥料,生產(chǎn)1車皮甲種肥料的主要原料是磷酸鹽4噸、硝酸鹽18噸;生產(chǎn)1車皮乙種肥料的主要原料是磷酸鹽1噸、硝酸鹽15噸,現(xiàn)庫(kù)存磷酸鹽10噸、硝酸鹽66噸,在此基礎(chǔ)上生產(chǎn)這兩種混合肥料。如果生產(chǎn)1車皮甲種肥料,產(chǎn)生的利潤(rùn)為12000元;生產(chǎn)1車皮乙種肥料,產(chǎn)生的利潤(rùn)為7000元。那么可產(chǎn)生最大的利潤(rùn)是__________元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知公差的等差數(shù)列的前項(xiàng)和為,且滿足,.

1)求數(shù)列的通項(xiàng)公式;

2)求證:是數(shù)列中的項(xiàng);

3)若正整數(shù)滿足如下條件:存在正整數(shù),使得數(shù)列,為遞增的等比數(shù)列,求的值所構(gòu)成的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,曲線C1是以原點(diǎn)O為中心,F(xiàn)1,F(xiàn)2為焦點(diǎn)的橢圓的一部分曲線C2是以O(shè)為頂點(diǎn),F(xiàn)2為焦點(diǎn)的拋物線的一部分,A是曲線C1和C2的交點(diǎn)且AF2F1為鈍角,若|AF1|=,|AF2|=

(1)求曲線C1和C2的方程;

(2)設(shè)點(diǎn)C是C2上一點(diǎn),若|CF1|=|CF2|,求CF1F2的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中, , ,若該三棱錐的四個(gè)頂點(diǎn)均在同一球面上,則該球的體積為( )

A. B. C. D.

【答案】D

【解析】在三棱錐中,因?yàn)?/span>, ,所以,則該幾何體的外接球即為以為棱長(zhǎng)的長(zhǎng)方體的外接球,則 ,其體積為 ;故選D.

點(diǎn)睛:在處理幾何體的外接球問(wèn)題,往往將所給幾何體與正方體或長(zhǎng)方體進(jìn)行聯(lián)系,常用補(bǔ)體法補(bǔ)成正方體或長(zhǎng)方體進(jìn)行處理,本題中由數(shù)量關(guān)系可證得 從而幾何體的外接球即為以為棱長(zhǎng)的長(zhǎng)方體的外接球,也是處理本題的技巧所在.

型】單選題
結(jié)束】
21

【題目】已知函數(shù),則的大致圖象為(

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們國(guó)家正處于老齡化社會(huì)中,老有所依也是政府的民生工程.某市有戶籍的人口共萬(wàn),其中老人(年齡歲及以上)人數(shù)約有萬(wàn),為了了解老人們的健康狀況,政府從老人中隨機(jī)抽取人并委托醫(yī)療機(jī)構(gòu)免費(fèi)為他們進(jìn)行健康評(píng)估,健康狀況共分為不能自理、不健康尚能自理、基本健康、健康四個(gè)等級(jí),并以歲為界限分成兩個(gè)群體進(jìn)行統(tǒng)計(jì),樣本分布被制作成如下圖表:

(1)若從樣本中的不能自理的老人中采取分層抽樣的方法再抽取人進(jìn)一步了解他們的生活狀況,則兩個(gè)群體中各應(yīng)抽取多少人?

(2)估算該市歲以上長(zhǎng)者占全市戶籍人口的百分比;

(3)政府計(jì)劃為歲及以上長(zhǎng)者或生活不能自理的老人每人購(gòu)買元/年的醫(yī)療保險(xiǎn),為其余老人每人購(gòu)買元/年的醫(yī)療保險(xiǎn),不可重復(fù)享受,試估計(jì)政府執(zhí)行此計(jì)劃的年度預(yù)算.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】20051215,中央密蘇里州立大學(xué)的教授 Curtis Cooper Steven Boone發(fā)現(xiàn)了第43個(gè)麥森質(zhì)數(shù).這個(gè)質(zhì)數(shù)是______位數(shù);它的末兩位數(shù)是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在極坐標(biāo)系中,曲線的極坐標(biāo)方程為,以極點(diǎn)為原點(diǎn),極軸為軸的非負(fù)半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù), ).

(1)求曲線的直角坐標(biāo)方程和直線的普通方程;

(2)若曲線上的動(dòng)點(diǎn)到直線的最大距離為,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案